Ultrasound Database •
Usually, multiple probes are used because most transducers are only able to emit one frequency because the piezoelectric ceramic or crystals within it have a certain inherent frequency. Multi-frequency probes have multiple crystals with different frequencies and the desired specific frequency can be selected. Advanced probes can emit sound waves at different frequencies for the near and far fields. The disadvantage is that multi-frequency (multifrequency) probes have slower frame rates and therefore they are only useful for imaging of static structures. See also Dual Frequency Phased Array Transducer and Tri-Frequency Probe. •
(MPR) Multiplanar Reconstruction is a post processing technique for reformatting of a 3D data set at any angle; reconstructing e.g. the axial images into coronal, sagittal and oblique anatomical planes.
•
The multiple frame trigger adjusts the acquisition of a series of consecutive frames, usually with ECG triggering. Multiple frame triggers are used in harmonic power Doppler modes to identify motion artifacts in contrast enhanced Doppler imaging.
•
Ultrasound is an ideal tool to examine the joints and surrounding soft tissues like tendons, ligaments and joint linings. Musculoskeletal and joint sonography is sensitive, without radiation exposure, easy accessible, quick, and has high patient tolerability with relatively low cost. A real-time scanner allow the dynamic assessment of the musculoskeletal system and a specific examination for each patient. In addition, joint aspiration and injection accuracy can be improved. Probes with high frequency improve the image resolution and allow visualization of fine anatomic structures of the small parts. As musculoskeletal ultrasound (MSUS) is very operator dependent, experience and training is required. Ultrasound is also often used in the treatment of musculoskeletal disorders. See also Ultrasound Therapy, Real-Time Mode, Artifact and Ultrasound Biomicroscopy. • View NEWS results for 'Musculoskeletal and Joint Ultrasound' (1). Further Reading: Basics:
•
From ESAOTE S.p.A.;
'The MyLab™30CV ultrasound system is an evolutionary step in ultrasound technology. Weighing less than 20 pounds, it is the first compact ultrasound system to deliver premium console performance. And with mobile, portable or stationary configurations, MyLab30CV can adapt to any clinical environment.'
Device Information and Specification
APPLICATIONS
Abdominal, breast, cardiac, OB/GYN, pediatric, pediatric cardiology, small parts, transcranial, vascular
CONFIGURATION
Portable
Linear: 4-10 MHz, convex: 2-5 MHz, phased: 1.6-10 MHz, micro convex: 5-7.5 MHz, endocavity: 5-7.5 MHz, pencil: 2 + 5 MHz
2-D, M-mode, duplex, triplex, color Doppler, pulsed wave Doppler, tissue velocity mapping (TVM), tissue enhancement imaging (TEI™), contrast harmonic imaging, stress echo, tissue velocity mapping for LV motion analysis (TVM), contrast tuned imaging for contrast media procedures (CnTI™), Qontrast™ for myocardium parameters quantification
STORAGE, CONNECTIVITY, OS
Digital patient archive/management, integrated CD/RW, RJ 45 and USB ports, Windows
H*W*D m (inch.)
0.16 * 0.36 * 0.50 (6.2 x 14 x 19.3)
WEIGHT
Less than 11 kg (20 lbs.)
|