'Ultrasound Imaging Procedures' p2 Searchterm 'Ultrasound Imaging Procedures' found in 15 articles 1 term [ • ] - 5 definitions [• ] - 9 booleans [• ]Result Pages : •
Urologic ultrasound includes the examination of the kidneys, renal vessels, urinary tract, bladder, prostate, and scrotum. Usual gray scale ultrasound equipment and standard probes are sufficient to examine the kidney parenchyma and renal pelvis, the urinary tract and bladder. Doppler ultrasound is a useful adjunct to kidney ultrasound. High ultrasound system performance is desirable to show the arterial system, because advanced power Doppler is significantly more sensitive to blood flow than standard color Doppler. Transurethral sonography may be used to examine the bladder and urethra. Transrectal sonography is used to scan and treat the prostate e.g., with brachytherapy or high intensity focused ultrasound. Very small probes are used for these applications. Reflux sonography is especially used in pediatric ultrasound. See also Ultrasound Imaging Procedures, Ultrasound Picture, Ultrasound Imaging Modes, Lithotripsy, Thermotherapy, Brachytherapy and Ultrasound Therapy. Further Reading: Basics:
News & More:
•
[This entry is marked for removal.] GE Medical Systems and Amersham announced in April 2004 the completion of a share exchange acquisition of Amersham Health by GE. The result of this acquisition is the new GE Healthcare, based in the UK, totally owned by General Electric (GE). The British company was a producer of contrast-imaging agents used to enhance image quality in X-ray, magnetic resonance imaging, and ultrasound procedures. It was also a leading producer of radiopharmaceuticals used in nuclear medicine imaging. Amersham Health was the firm's imaging, diagnostics, and therapeutics segment. Amersham was involved in biotechnology research through its Amersham Biosciences unit, which makes scanners, sequencers, microarrays, industrial separations, and other research supplies. •
Interventional ultrasound, also known as ultrasonography, encompasses a range of invasive or surgical procedures guided by ultrasound imaging. While its widest application lies in intravascular ultrasound imaging for measuring atherosclerotic plaque, it has proven valuable in various medical fields. In urology, ultrasound-guided interventions are employed for treatments like high intensity focused ultrasound (HIFU) in prostate conditions. The precise imaging provided by ultrasound aids in targeting the affected area and delivering therapeutic energy effectively. In intraabdominal conditions, endoscopic ultrasound is frequently utilized. This technique combines ultrasound imaging with an endoscope to visualize and evaluate structures within the gastrointestinal tract, allowing for precise diagnoses and targeted interventions. Ultrasound-guided procedures play a significant role in several medical specialties, including liver sonography, obstetric and gynecologic ultrasound, and thyroid ultrasound. These procedures involve interventions such as RF thermal ablation or biopsies, which are guided by real-time ultrasound imaging. For instance, in liver sonography, ultrasound guidance is crucial for performing biopsies or RF thermal ablation, a technique used to treat liver tumors by delivering localized heat to destroy the abnormal tissue. The real-time imaging allows for precise needle placement and monitoring during the procedure. In obstetric and gynecologic ultrasound, ultrasound-guided procedures, such as biopsies, can be performed to obtain tissue samples for diagnostic purposes. Additionally, ultrasound guidance is valuable during interventions like amniocentesis or fetal blood sampling, enabling accurate and safe procedures. Thyroid ultrasound procedures often involve ultrasound-guided fine-needle aspiration biopsy (FNAB), which allows for the sampling of thyroid nodules for cytological examination. The ultrasound image helps guide the needle into the targeted area, ensuring accurate sampling and minimizing potential complications. Overall, ultrasound-guided interventions provide minimally invasive and precise approaches to diagnosis and treatment. The real-time imaging capabilities of ultrasound contribute to enhanced accuracy, safety, and patient outcomes in procedures like biopsies, injections, and drainage. See also Transurethral Sonography, Endocavitary Echography, and B-Mode Acquisition and Targeting. •
Pulsed ultrasounds are cycles of ultrasound separated in time with gaps of no signal. Pulsed sound waves are generated by short, strong pulses of sound from a phased array of piezoelectric crystals. The transducer, though emitting ultrasound in rapid pulses, acts as a receiver most of the time. In sonography, pulsed ultrasound is used to perform diagnostic or therapeutic procedures. See also Pulse Average Intensity, Release Burst Imaging. •
2D ultrasound imaging is a widely used technique in medical imaging that provides two-dimensional visual representations of internal structures. A handheld device known as a probe or transducer contains piezoelectric crystals that emit and receive ultrasound waves which penetrate tissues and bounce back as echoes. The echoes are detected and converted into electrical signals. These signals are processed and displayed on a monitor, creating a real-time 2D grayscale image, with different shades of gray representing various tissue densities. The brighter areas on the image correspond to structures that reflect more ultrasound waves, while darker areas represent structures that reflect fewer waves or are attenuated by intervening tissues. The 2D-mode (or B-mode) provides cross-sectional views of the scanned area, showing a single plane or slice of the scanned area at a time. Key Features and Uses of 2D Ultrasound: •
•
2D ultrasound is excellent for visualizing anatomical structures and detecting anomalies. It is widely used in obstetrics, gynecology, abdominal imaging and vascular examinations.
•
Due to its real-time capabilities, 2D ultrasound is utilized to guide various procedures, including biopsies, injections, and catheter insertions.
•
2D sonography can incorporate Doppler technology to assess blood flow in vessels, aiding in the diagnosis of vascular conditions and evaluating fetal circulation.
Comparison with 3D and 4D Ultrasound: •
Unlike 2D ultrasound, which generates a series of 2D images, 3D ultrasound creates a three-dimensional volume of the scanned area. This allows for more detailed visualization of complex structures, such as fetal facial features or organ morphology.
•
4D ultrasound adds the dimension of time to 3D imaging, resulting in dynamic three-dimensional videos. It enables the visualization of fetal movements and provides a more immersive experience. However, a 4D sonogram is not typically used for diagnostic purposes and is often employed in baby ultrasound examinations for bonding and enjoyment purposes.
See also Ultrasound Technology, Sonographer, Ultrasound Elastography, Obstetric and Gynecologic Ultrasound. Result Pages : |