'Ultrasound Gel' Searchterm 'Ultrasound Gel' found in 16 articles 1 term [ • ] - 9 definitions [• ] - 6 booleans [• ]Result Pages : • Ultrasound Gel
An ultrasound (US) scanning gel has the same conductivity as the human body and is applied between the transducer and the skin surface. Air is a bad conductor of US, so this acoustic gel is used to conducts the sound beam and allows the ultrasound probe to pass smoothly over the skin. The gel will be removed after the examination, and it will not stain skin or clothing. The basic dermatological requirement of a scanning gel is that it be free of skin irritants or sensitizers. In addition, effective preservatives with low incidence of skin reaction are required to prevent microbiological degradation of the gel. The broad range of patients imaged with ultrasound, from pregnant women and infants to the infirm or elderly dictates that the risk of skin reaction must be minimized. The effect of small bubbles in the ultrasound couplant under the transducer is to disperse the ultrasound which results in clouding of the image. This effect is most clearly seen on anechoic regions of the image which becomes cloudy. Air bubbles, regardless of their size, degrade the performance of ultrasound in all medical applications including imaging, Lithotripsy and physical therapy. There are some chemicals, including mineral oil, silicone oil, alcohol, surfactants, and fragrances that can degrade the acoustic lens, destroy bonding, or change the acoustic properties of the lens. The use of scanning gels or lotions in diagnostic ultrasound containing these chemicals should be avoided. In therapeutic ultrasound, ultrasound transmission gels and lotions commonly contain oils and other chemicals not intended for use with diagnostic imaging transducers. See also Ultrasound Therapy and Ultrasound Physics. Further Reading: News & More:
•
Common ultrasound supplies that are often used in conjunction with ultrasound imaging:
•
Ultrasound Gel: A water-based gel used as a coupling agent between the transducer and the patient's skin. It helps eliminate air pockets and ensures good sound wave transmission. •
Probe Covers: Disposable covers designed to maintain hygiene and prevent cross-contamination. These covers are placed over the transducer before each examination. •
Cleaning Wipes: Alcohol-based or disinfectant wipes used for cleaning and disinfecting the transducer and other equipment surfaces. Specific cleaning solutions are recommended by the ultrasound equipment manufacturer for thorough cleaning of transducers. •
Gel Warmers: Devices used to warm ultrasound gel, providing patient comfort during the examination. •
Needle Guides: Attachments or brackets that assist in accurate needle placement during ultrasound-guided procedures such as biopsies or injections. •
Positioning Aids: Cushions, wedges, or straps designed to help position patients correctly and comfortably during ultrasound exams. Common ultrasound accessories that are often used in conjunction with ultrasound imaging: •
Transducer Storage Rack: A dedicated rack or holder to store transducers safely when not in use, helping to prevent damage. •
Storage and Archiving Solutions: External hard drives, network storage, or cloud-based systems for long-term storage and backup of ultrasound images and reports. Possibly specialized printers that produce hard copies of ultrasound images for immediate documentation and patient records. •
Power Supply and Transducer Cable Extenders: Extension cables used to increase the length of transducer cables for more flexibility during examinations. Adequate power sources or uninterrupted power supply (UPS) to ensure continuous operation of the ultrasound machine during power outages or fluctuations. •
Reporting Templates and Software: Customizable reporting templates and software solutions that facilitate efficient and standardized reporting of ultrasound findings. •
Phantom Devices: Artificial tissue-like structures or phantoms used for training, calibration, and quality assurance purposes to evaluate image quality and system performance. Consult with ultrasound equipment vendors or professionals in the field to determine the specific accessories and supplies that best suit your imaging needs and specialty. See also Equipment Preparation, Environmental Protection, Portable Ultrasound Machine, Ultrasound Technology, Ultrasound System Performance and Sonographer. •
The acoustic window or field is the area defined by the pathway of the ultrasound beam between the transducer and the acoustic reflector. The sound reflection to skin boundary should be minimized with an ultrasound gel where this gel acts as an acoustic window through which the image is seen. Acoustic window refers also to the optimal placing of the transducers so that the areas of interest are clearly imaged. See also Transforaminal Window, Transcranial Window, Transorbital Window and Transtemporal Window. •
The usual applications of endocavitary echography (also called internal echography / endoscopic ultrasound (EUS)) are examinations of the pelvic organs through internally introduced probes, which give a more precise and correct image. Transrectal ultrasound is a well established method for rectal or prostate carcinoma assessment. A transvaginal echography uses a small transducer that is inserted directly into the vagina. Used are high-frequency (10-12 MHz) for superficial organs, endocavitary echography, and intraoperative laparoscopic ultrasound. A sterile cover is slipped over the probe, which is then covered with lubricating ultrasound gel and placed in the cavitary (see Equipment Preparation). See also Endoscopic Ultrasound, Prostate Ultrasound, Interventional Ultrasound, Transurethral Sonography, Vaginal Probe, Rectal Probe. •
Environmental protection in ultrasound imaging involves adopting practices and technologies that minimize the environmental impact associated with the use of ultrasound equipment and disposables. Here are some key considerations: •
Energy Efficiency: Opt for energy-efficient ultrasound machines and equipment that are designed to minimize energy consumption. This helps reduce the overall environmental impact associated with power usage. •
Digitalization and Paper Reduction: Embrace digital imaging and archiving systems to reduce reliance on paper. Storing images and reports electronically minimizes paper consumption, printing supplies, and physical storage space. •
Waste Management: Implement proper waste management practices for ultrasound-related disposables, such as ultrasound gel bottles, probe covers, and cleaning materials. Follow local regulations for the disposal of medical waste and prioritize recycling and responsible disposal methods. •
Equipment Lifespan and Disposal: Choose ultrasound equipment known for its durability and longevity. Maximizing the lifespan of equipment reduces the frequency of replacements, minimizing electronic waste generation. When disposing of old equipment, ensure proper recycling and disposal in accordance with local regulations. •
Education and Awareness: Promote education and awareness among ultrasound professionals about environmentally conscious practices. Encourage staff to adopt energy-saving habits, such as turning off equipment when not in use, and emphasize the importance of responsible waste management. Develop standardized and optimized examination protocols to minimize the duration and number of ultrasound scans required per patient. This helps reduce the energy consumption associated with prolonged imaging sessions and decreases the overall environmental impact. By focusing on energy efficiency, digitalization, waste management, equipment lifespan, and education, healthcare facilities can make significant strides towards reducing their carbon footprint and the environmental impact of ultrasound imaging practices. See also Ultrasound System Performance, Equipment Preparation, Ultrasound Accessories and Supplies and Sonographer. Result Pages : |