Medical Ultrasound Imaging
Saturday, 23 November 2024
• Welcome to
     Medical-Ultrasound-Imaging.com!
     • Sign in / Create account
 
 'Ultrasonic' p8
SEARCH   
A B C D E F G H I J K L M N O P Q R S T U V W Z 
Searchterm 'Ultrasonic' found in 40 articles
4
terms [
] - 36 definitions [
]
Result Pages :
Ultrasound Contrast Agent Safety
The various gas microbubble contrast media are generally safe with low toxicity in humans. The tolerance of these agents is much higher than that of most x-ray agents, a reflection perhaps of the higher expectation of safety and convenience for ultrasound.
Extensive preclinical and clinical trials have demonstrated an excellent ultrasound contrast agent safety profile, the main side effect being a mild and transient local discomfort at the injection site which results from the high osmolality of these agents. Each contrast agent has its own profile of adverse effects, but all have been trivial thus far.

See also Ultrasonic Contrast Agents.
• 
View NEWS results for 'Ultrasound Contrast Agent Safety' (4).Open this link in a new window.
Ultrasound Radiation Force
The traveling ultrasonic wave causes a low-level ultrasound radiation force when this energy is absorbed in tissues (absorbed dose). This force produces a pressure in the direction of the beam and away from the transducer. It should not be confused with the oscillatory pressure of the ultrasound wave itself. The pressure that results and the pressure gradient across the beam are very low, even for intensities at the higher end of the range of diagnostic ultrasound. Mechanical effects like radiation forces lead to stress at tissue interfaces. The effect of the force is manifest in volumes of fluid where streaming can occur with motion within the fluid. The fluid velocities which result are low and are unlikely to cause damage.
The effects of ultrasound radiation force (also called Bjerknes Forces) were first reported in 1906 by C. A. and V. F. K. Bjerknes, when they observed the attraction and repulsion of air bubbles in a sound field.
While incompressible objects do experience radiation forces, compressible objects driven at their resonant frequency experience far larger forces and can be observably displaced by low-amplitude ultrasound waves. A microbubble driven near its resonance frequency experiences a large net radiation force in the direction of ultrasound wave propagation. Ultrasound pulses of many cycles can deflect resonant microbubbles over distances on the order of millimeters.
In addition to primary radiation force, which acts in the direction of acoustic wave propagation, a secondary radiation force for which each individual bubble is a source and receptor causes the microspheres to attract or repel each other. The result of this secondary force is that a much larger concentration of microbubbles collects along a vessel wall than might otherwise occur.

See also Acoustically Active Lipospheres.
Ultrasound Safety
The main advantage of ultrasound is that certain structures can be observed without using radiation. However, ultrasound is energy and there are ultrasound safety regulations, because two bioeffects of ultrasound are heat and cavitation. Ultrasound is a mechanical energy in which a pressure wave travels through tissue. Reflection and scattering back to the transducer are used to form the image. As sound energy is transmitted through the tissue, some energy is reflected and some power is absorbed.
Possible physical effects with ultrasound:
Thermal effects of ultrasound, because tissues or water absorb the ultrasound energy with increase in temperature.
Cavitation is the formation, growth, and dynamic behavior of gas bubbles (e.g. microbubbles used as contrast agents) at high negative pressure. This dissolved gases come out of solution due to local heat caused by sound energy. This has been determined harmful at the level of the medical usage.
Mechanical effects of ultrasound include ultrasound radiation force and acoustic streaming.

The ultrasound safety is based on two indices, the mechanical index (MI) and the thermal index (TI). The WFUMB guidelines state that ultrasound that produces temperature rises of less than 1.5°C may be used without reservation. They also state that ultrasonic exposure causing temperature rises of greater than 4°C for over 5 min should be considered potentially hazardous. This leaves a wide range of temperature increases which are within the capability of diagnostic ultrasound equipment to produce and for which no time limits are recommended. However, it has not been determined that medical ultrasound causes any adverse reaction or deleterious effect.
The American Institute of Ultrasound in Medicine states that as of 1982, no independently confirmed significant biologic effects had been observed in mammalian tissue below (medical usage) 100mW/cm2.

See also Ultrasound Regulations and Ultrasound Radiation Force.
Ultrasound Therapy
Ultrasound therapy uses high energy sound waves to treat different diseases. Historically, the use of ultrasonic waves in therapy began before the wide use as a diagnostic medical imaging tool. Dependend on the intensity, ultrasound therapy reach from the thermal effect used in physical therapy to the destruction of tissue with lithotripsy.

Types of ultrasound treatment:
See also Thermal Index, History of Ultrasound, Interventional Ultrasound, and B-Mode Acquisition and Targeting.
Veterinary Ultrasound
Conventional, CT and MR imaging technologies are limited in their availability, to depict soft tissue, or to show dynamic activity, like cardiac muscle contractility and blood flow. Easy applicability, real-time sonography and biopsy facilitation are important advantages in veterinarian medicine. Veterinary ultrasound has a very high sensitivity to show the composition of soft tissues, but the low specificity is a disadvantage. High ultrasound system performance includes Doppler techniques, contrast enhanced ultrasound, 3D ultrasound, and tissue harmonic imaging to improve resolution.
Technical and physical requirements of veterinary ultrasound are the same as in human ultrasonography. The higher the sound frequency, the better the possible resolution, but the poorer the tissue penetration. Image quality is depended of the ultrasound equipment. For example, a 10 MHz transducer is excellent for imaging of superficial structures; a 3.5 or 5.0 megahertz transducer allows sufficient penetration to see inner structures like the liver or the heart. In addition, the preparation and performing of the examination is similar to that of humans. The sound beam penetrates soft tissue and fat well, but gas and bone impede the ultrasonic power. Fluid filled organs like the bladder are often used as an acoustic window, and an ultrasound gel is used to conduct the sound beam.
Result Pages :
 
Share This Page
Facebook
Twitter
LinkedIn
Look
      Ups
Medical-Ultrasound-Imaging.com
former US-TIP.com
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology TIP • Medical-Ultrasound-Imaging
Copyright © 2008 - 2024 SoftWays. All rights reserved.
Terms of Use | Privacy Policy | Advertise With Us
 [last update: 2023-11-06 01:42:00]