'Transducer' p6 Searchterm 'Transducer' found in 185 articles 13 terms [ • ] - 172 definitions [• ] Result Pages : •
Duplex ultrasonography (duplex scan) consists of two ultrasound modalities to study blood flow and the perivascular tissue. This includes B-mode / gray scale imaging used in combination with spectral Doppler / pulsed-wave Doppler. The real-time visualization of the vessels and tissue by the B-mode component improves the PW Doppler positioning and the direction of blood flow can be inferred. The angle between the direction of the PW Doppler signal and the estimated direction of blood flow can be measured. Duplex techniques are available on phased array, linear array, and mechanical scanners. A phased array probe is able to create nearly simultaneous images and flow information. A linear array transducer can also do this if the Doppler probe is attached separately to one end of the scanhead. A mechanical transducer freeze the image; the crystals must be static to produce a Doppler image. The first two transducers are therefore the best choice for Duplex. See also Compound B-Mode, and Duplex Scanner. Further Reading: News & More:
•
The far field (also called Fraunhofer zone) is the distal part of an ultrasound beam characterized by a diverging shape and continuous loss of ultrasound intensity with distance from the transducer. The angle of divergence increases with lower transducer frequency and with smaller transducer diameter. See also Sonographic Features. •
A handle or probe contains the transducer elements and is attached to the system via a relatively long coaxial cable. Handles are selected via high voltage (HV) relays. In most ultrasound machines, several different handles are available to be connected to the system, allowing the operator to select the appropriate transducer for optimal imaging. See also Probe Cleaning, and Transducer Assembly. •
A piezoelectric crystal changes the physical dimensions when subjected to an electric field. When deformed by external pressure, an electric field is created across the crystal. Piezoelectric ceramic and crystals are used in ultrasound transducers to transmit and receive ultrasound waves. The piezoelectric crystal in ultrasound transducers has electrodes attached to its front and back for the application and detection of electrical charges. The crystal consists of numerous dipoles, and in the normal state, the individual dipoles have an oblique orientation with no net surface charge. In ultrasound physics, an electric field applied across the crystal will realign the dipoles and results in compression or expansion of the crystal, depending on the direction of the electric field. For the transmission of a short ultrasound pulse, a voltage spike of very short duration is applied, causing the crystal to initially contract and then vibrate for a short time with its resonant frequency. See also Composite Array, Transducer Pulse Control, and Temporal Peak Intensity. •
The thermal effect of ultrasound is caused by absorption of the ultrasound beam energy. As the ultrasound waves are absorbed, their energy is converted into heat. The higher the frequency, the greater the absorbed dose, converted to heat according the equation: f = 1/T where T is the period as in simple harmonic motion. Ultrasound is a mechanical energy in which a pressure wave travels through tissue. Heat is produced at the transducer surface and also tissue in the depth can be heated as ultrasound is absorbed. The thermal effect is highest in tissue with a high absorption coefficient, particularly in bone, and is low where there is little absorption. The temperature rise is also dependent on the thermal characteristics of the tissue (conduction of heat and perfusion), the ultrasound intensity and the length of examination time. The intensity is also dependent on the power output and the position of the tissue in the beam profile. The intensity at a particular point can be changed by many of the operator controls, for example power output, mode (B-mode, color flow, spectral Doppler), scan depth, focus, zoom and area of color flow imaging. The transducer face and tissue in contact with the transducer can be heated. See also Thermal Units Per Hour and Ultrasound Radiation Force. Result Pages : |