'Transducer' p4 Searchterm 'Transducer' found in 185 articles 13 terms [ • ] - 172 definitions [• ] Result Pages : •
Ultrasound machines, widely used in medical imaging, are essential tools in the field of diagnostic ultrasound. These devices utilize high-frequency sound waves to create real-time images of internal body structures. Ultrasound machines consist of several key components that work together to generate diagnostic images.
These include:
•
The transducer is a handheld device that emits and receives sound waves. It converts electrical energy into sound waves and captures the returning echoes to create images.
•
The control panel houses the interface where the sonographer adjusts imaging parameters such as depth, frequency, and gain. It allows for customization of imaging settings based on the clinical requirements. The transducer pulse controls change the amplitude, frequency and duration of the pulses emitted from the transducer probe.
•
The central processing unit (CPU) serves as the brain of the ultrasound machine, processing the acquired data and transforming it into images. It handles complex calculations, image optimization, data storage and contains the electrical power supplies for itself and the transducer probe.
•
The display monitor (oscilloscope, tablet, computer monitor, etc.) showcases the real-time ultrasound images produced by the machine. It provides visual feedback to the sonographer, aiding in the interpretation and analysis of anatomical structures. Handheld ultrasound devices and mobile ultrasound probes can be connected wirelessly to a smartphone or tablet via Bluetooth or WiFi. These end device serves then as the ultrasound monitor.
•
Data input and measurements are done with the keyboard cursor (trackball). Ultrasound devices used for handheld point of care ultrasound (HPOCUS) are operated via the touch screen of the control panel.
•
Images are captured, reviewed, stored and transmitted digitally, using a standard format for digital imaging and communications in medicine (DICOM). Disk storage devices (FDD, HDD, CD, DVD) are outdated, but may be used in older machines to store the acquired images if no picture archiving and communication system (PACS) connection is possible.
•
The displayed ultrasound pictures are usually digitally stored in a PACS. The images from portable ultrasound machines can be stored and conveniently managed on the end device itself, the inserted memory card or in the cloud. With a QR scanner, the images can be accessed via the Internet in the cloud. Often there is also the possibility to get a picture of a baby sonography as a printout.
B-mode machines represent the vast majority of machines used in echocardiology, obstetrical scans, abdominal scans, gynecological scans, etc. B-mode ultrasound machines usually produce the sector (or pie segment-shaped) scans. These ultrasound scans require either a mechanical scanner transducer (the transducer moves to produce the sector scan), or a linear array transducer operated as a phased array. Ultrasound machines come in different types, each catering to specific clinical needs. The two primary types are stationary and portable ultrasound machines: •
Stationary units are typically larger in size and are installed in dedicated imaging rooms. These machines offer advanced imaging capabilities and a wide range of specialized features. They are commonly found in hospitals, clinics, and university medical centers where comprehensive imaging services are provided.
•
Portable units (see Portable Ultrasound Machine), as the name suggests, are compact and lightweight, designed for on-the-go imaging. These machines are highly versatile and offer excellent mobility, allowing healthcare professionals to bring the ultrasound system directly to the patient's bedside. Portable ultrasound machines are particularly useful in emergency settings, rural healthcare facilities, and point-of-care applications.
See also Handheld Ultrasound, Ultrasound System Performance, Equipment Preparation, Coaxial Cable, and Microbubble Scanner Modification, Environmental Protection and Ultrasound Accessories and Supplies. Further Reading: Basics: News & More:
•
In the field of medical ultrasound imaging, the term 'probe' specifically refers to the ultrasound transducer and represent the handheld device that emits and receives ultrasound waves during an examination. The probe encompasses various components such as the elements, backing material, electrodes, matching layer, and protective face that are responsible for both emitting and receiving the sound waves. Aperture, known also as the footprint, is the part of the probe that is in contact with the body. When the emitted sound waves encounter body tissues, they generate reflections that are received by the probe, which then generates a corresponding signal. In most cases, the probe emits ultrasound waves for only about 10% of the time and receives them for the remaining 90%. Probes are available in different shapes and sizes to accommodate various scanning situations. The footprint is linked to the arrangement of the piezoelectric crystals and comes in different shapes and sizes e.g. linear array transducer//convex transducer. The transducer plays a huge role in image quality and is one of the most expensive parts of the ultrasound machine. Mechanical probes steer the ultrasound beam driven by a motor and are capable of producing high-quality images, but they are prone to wear and tear. Mechanical probes have been mostly replaced by electronic multi-element transducers, but mechanical 3D probes still remain for abdominal and Ob-Gyn applications. In summary, the terms 'ultrasound transducer,' 'probe,' and 'scanhead' are often used interchangeably to refer to the same component of the ultrasound machine. Probes consist of multiple components and are available in different shapes and sizes depending on the sonographer's needs. See also Handheld Ultrasound, Ultrasound System Performance, Omnidirectional, Probe Cleaning, and Multi-frequency Probe, Further Reading: News & More:
•
Equipment Preparation is an essential step in ensuring optimal ultrasound imaging quality and maintaining a safe and hygienic scanning environment. The following considerations should be taken into account:
•
Ultrasound Machine Warm-Up: The ultrasound scanner should be turned on and allowed to warm up for at least 5 minutes before initiating the examination. This allows the system to stabilize and ensures consistent performance. •
Transducer Selection: The appropriate pobe should be selected based on the type of examination required, as well as the patient's body size, weight, and habitus. Different transducer offer varying frequencies, field of view, and imaging capabilities, allowing for tailored imaging based on the specific clinical needs. •
Power Settings and Techniques: Prior to beginning the examination, it is crucial to verify and adjust the power settings and imaging techniques according to the examination protocol. This ensures that the ultrasound machine is optimized for the specific diagnostic requirements •
Acoustic Couplant Application: An adequate amount of acoustic couplant, such as warmed ultrasound gel, should be applied to the patient's skin or the transducer surface. This gel serves as a medium that promotes maximum transmission of the sound beam by eliminating air interfaces, leading to improved image quality. •
Transducer Cleaning and Probe Covers: All transducers should be cleaned and readily available for use with each patient. While endocavitary ultrasound probes are often protected by single-use disposable probe covers, it is important to maintain proper hygiene by performing a high-level disinfection of the probe between each use. Additionally, using a probe cover as an additional measure can help keep the probe clean and minimize the risk of cross-contamination. By following these equipment preparation guidelines, healthcare professionals can ensure accurate and safe ultrasound examinations while promoting infection control measures and maintaining a hygienic environment for both patients and staff. See also Environmental Protection, Portable Ultrasound Machine, Ultrasound Accessories and Supplies, and Ultrasound System Performance. •
The acoustic lens is placed at the time the transducer is manufactured and cannot be changed. The acoustic lens is generally focused in the mid field rather than the near or far fields. The exact focal length varies with transducer frequency, but is generally in the range of 4-6 cm for a 5 MHz curved linear probe and 7-9 cm for a 3.5 MHz curved transducer. Placing the elevation plane (z-plane) focal zone of the acoustic lens in the very near or far field would improve the beam width at precisely those depths. However, this would degrade the beam width to a much greater and unacceptable degree at all other depths. There are some chemicals in ultrasound couplants that can degrade the acoustic lens, destroy bonding, or change the acoustic properties of the lens. Problematic chemicals include mineral oil, silicone oil, alcohol, surfactants, and fragrances. Fragrance can affect the transducer's acoustic lens or face material by absorption over time into elastomer and plastic materials, thus changing the material's weight, size, density, and acoustic impedance. Surfactants can degrade the bond between the lens and the piezoelectric elements and contribute to the accelerated degeneration of the lens. See also Retrolenticular Afterglow. Further Reading: Basics:
News & More:
•
The dead or ring down zone is the distance from the front
face of the transducer to the first echo that is identifiable. The signals
from this region are unsuitable. The dead zone is the result of transducer ringing and reverberations from the interface between the transducer and the scanned object. Impedance matching between the transducer and the receiver is important to avoid electrical ringing. With an increase of the frequency, the pulse length and the depth of the dead zone decrease, if all other parameters remain constant. The acoustic power also affects the depth of the dead zone. Further Reading: News & More: Result Pages : |