'Thermal Effect' p2 Searchterm 'Thermal Effect' found in 17 articles 1 term [ • ] - 11 definitions [• ] - 5 booleans [• ]Result Pages : •
(I-SPTA) Spatial peak time averaged intensity is the measure most associated with temperature rise. See also Thermal Effect, and Time Average Intensity. •
(BTU/Hr) BTU/Hr is a common measure of heat transfer rate. Capacities of furnaces and boilers are for example expressed in thermal units per hour (British unit). One BTU/Hr is the amount of heat required to heat one pound of water one degree Fahrenheit per hour. BTU/Hr is the unit that expresses how much the ultrasound machine heats up the surrounding area. See also Thermal Effect, Ultrasound Physics. •
Due to the absorption of ultrasound, heating of tissue (including bone) can occur. For this reason, the sonographer should follow the ALARA principle to minimize the potential for ultrasonic heating of tissue during for example M-mode ultrasound. The thermal effect of Doppler ultrasound flow examinations is significantly greater.
See also Thermal Index and Ultrasonic Power. •
(US) Also called echography, sonography, ultrasonography, echotomography, ultrasonic tomography. Diagnostic imaging plays a vital role in modern healthcare, allowing medical professionals to visualize internal structures of the body and assist in the diagnosis and treatment of various conditions. Two terms that are commonly used interchangeably but possess distinct meanings in the field of medical imaging are 'ultrasound' and 'sonography.' Ultrasound is the imaging technique that utilizes sound waves to create real-time images, while sonography encompasses the entire process of performing ultrasound examinations and interpreting the obtained images. Ultrasonography is a synonymous term for sonography, emphasizing the use of ultrasound technology in diagnostic imaging. A sonogram, on the other hand, refers to the resulting image produced during an ultrasound examination. Ultrasonic waves, generated by a quartz crystal, cause mechanical perturbation of an elastic medium, resulting in rarefaction and compression of the medium particles. These waves are reflected at the interfaces between different tissues due to differences in their mechanical properties. The transmission and reflection of these high-frequency waves are displayed with different types of ultrasound modes. By utilizing the speed of wave propagation in tissues, the time of reflection information can be converted into distance of reflection information. The use of higher frequencies in medical ultrasound imaging yields better image resolution. However, higher frequencies also lead to increased absorption of the sound beam by the medium, limiting its penetration depth. For instance, higher frequencies (e.g., 7.5 MHz) are employed to provide detailed imaging of superficial organs like the thyroid gland and breast, while lower frequencies (e.g., 3.5 MHz) are used for abdominal examinations. Ultrasound in medical imaging offers several advantages including:
•
noninvasiveness;
•
safety with no potential risks;
•
widespread availability and relatively low cost.
Diagnostic ultrasound imaging is generally considered safe, with no adverse effects. As medical ultrasound is extensively used in pregnancy and pediatric imaging, it is crucial for practitioners to ensure its safe usage. Ultrasound can cause mechanical and thermal effects in tissue, which are amplified with increased output power. Consequently, guidelines for the safe use of ultrasound have been issued to address the growing use of color flow imaging, pulsed spectral Doppler, and higher demands on B-mode imaging. Furthermore, recent ultrasound safety regulations have shifted more responsibility to the operator to ensure the safe use of ultrasound. See also Skinline, Pregnancy Ultrasound, Obstetric and Gynecologic Ultrasound, Musculoskeletal and Joint Ultrasound, Ultrasound Elastography and Prostate Ultrasound. Further Reading: Basics: News & More:
•
Ultrasound physics is based on the fact that periodic motion emitted of a vibrating object causes pressure waves. Ultrasonic waves are made of high pressure and low pressure (rarefactional pressure) pulses traveling through a medium. Properties of sound waves: The speed of ultrasound depends on the mass and spacing of the tissue molecules and the attracting force between the particles of the medium. Ultrasonic waves travels faster in dense materials and slower in compressible materials. Ultrasound is reflected at interfaces between tissues of different acoustic impedance e.g., soft tissue - air, bone - air, or soft tissue - bone. The sound waves are produced and received by the piezoelectric crystal of the transducer. The fast Fourier transformation converts the signal into a gray scale ultrasound picture. The ultrasonic transmission and absorption is dependend on: See also Sonographic Features, Doppler Effect and Thermal Effect. Result Pages : |