Medical Ultrasound Imaging
Thursday, 21 November 2024
• Welcome to
     Medical-Ultrasound-Imaging.com!
     • Sign in / Create account
 
 'Sound Beam' p11
SEARCH   
A B C D E F G H I J K L M N O P Q R S T U V W Z 
Searchterm 'Sound Beam' found in 74 articles
1
term [
] - 73 definitions [
]
Result Pages :
Mechanical Index
(MI) The mechanical index is an estimate of the maximum amplitude of the pressure pulse in tissue. It is an indicator of the likelihood of mechanical bioeffects (streaming and cavitation). The mechanical index of the ultrasound beam is the amount of negative acoustic pressure within a ultrasonic field and is used to modulate the output signature of US contrast agents and to incite different microbubble responses.
The mechanical index is defined as the peak rarefactional pressure (negative pressure) divided by the square root of the ultrasound frequency.
The FDA ultrasound regulations allow a mechanical index of up to 1.9 to be used for all applications except ophthalmic (maximum 0.23). The used range varies from 0.05 to 1.9.
At low acoustic power, the acoustic response is considered as linear. At a low MI (less than 0.2), the microbubbles undergo oscillation with compression and rarefaction that are equal in amplitude and no special contrast enhanced signal is created. Microbubbles act as strong scattering objects due to the difference in impedance between air and liquid, and the acoustic response is optimized at the resonant frequency of a microbubble.
At higher acoustic power (MI between 0.2-0.5), nonlinear oscillation occurs preferentially with the bubbles undergoing rarefaction that is greater than compression. Ultrasound waves are created at harmonics of the delivered frequency. The harmonic response frequencies are different from that of the incident wave (fundamental frequency) with subharmonics (half of the fundamental frequency), harmonics (including the second harmonic response at twice the fundamental frequency), and ultra-harmonics obtained at 1.5 or 2.5 times the fundamental frequency. These contrast enhanced ultrasound signals are microbubble-specific.
At high acoustic power (MI greater than 0.5), microbubble destruction begins with emission of high intensity transient signals very rich in nonlinear components. Intermittent imaging becomes needed to allow the capillaries to be refilled with fresh microbubbles. Microbubble destruction occurs to some degree at all mechanical indices. A mechanical index from 0.8 to 1.9 creates high microbubble destruction. The output signal is unique to the contrast agent.
Power Modulation
Power modulation is a non-linear method, based on a multi-pulse technique where the acoustic amplitude (and hence power) of the transmitted pulses is changed. Full and half amplitudes pulses are used to induce changes in the response of the contrast agent. The received echoes from the emitted half amplitude pulse are adjusted with the full amplitude pulse and this pairs of pulses are subtracted. Power modulation is used to separate contrast agent echoes at low mechanical index, allowing real-time perfusion imaging.
Power modulation can be used with a low frequency wide band transducer to increase the depth and transmit the sound beam homogenous allowing ultraharmonic imaging.
Probe
In the field of medical ultrasound imaging, the term 'probe' specifically refers to the ultrasound transducer and represent the handheld device that emits and receives ultrasound waves during an examination.
The probe encompasses various components such as the elements, backing material, electrodes, matching layer, and protective face that are responsible for both emitting and receiving the sound waves. Aperture, known also as the footprint, is the part of the probe that is in contact with the body. When the emitted sound waves encounter body tissues, they generate reflections that are received by the probe, which then generates a corresponding signal. In most cases, the probe emits ultrasound waves for only about 10% of the time and receives them for the remaining 90%.
Probes are available in different shapes and sizes to accommodate various scanning situations. The footprint is linked to the arrangement of the piezoelectric crystals and comes in different shapes and sizes e.g. linear array transducer//convex transducer. The transducer plays a huge role in image quality and is one of the most expensive parts of the ultrasound machine. Mechanical probes steer the ultrasound beam driven by a motor and are capable of producing high-quality images, but they are prone to wear and tear. Mechanical probes have been mostly replaced by electronic multi-element transducers, but mechanical 3D probes still remain for abdominal and Ob-Gyn applications.
In summary, the terms 'ultrasound transducer,' 'probe,' and 'scanhead' are often used interchangeably to refer to the same component of the ultrasound machine. Probes consist of multiple components and are available in different shapes and sizes depending on the sonographer's needs.

See also Handheld Ultrasound, Ultrasound System Performance, Omnidirectional, Probe Cleaning, and Multi-frequency Probe,
Pulsed Wave Doppler
(PWD) Pulsed wave (PW) Doppler is a Doppler ultrasound mode that evaluates blood flow velocities in a range specific area along the length of the sound beam. Measured are changes in received frequency due to relative motion (flow) between a sound source (transducer) and sound receiver (transducer).
PW Doppler produces an audible signal as well as a graphical representation of flow. The Doppler shift produced by moving blood flow is calculated by the ultrasound system.

See also Amplitude Indicator, Pulsed Ultrasound.
Rarefactional Pressure
The rarefactional pressure is the amplitude of a negative instantaneous sound pressure in an ultrasound beam. Rarefaction is the reduction in pressure of the medium during the acoustic cycle.

See also Mechanical Index.
Result Pages :
 
Share This Page
Facebook
Twitter
LinkedIn
Look
      Ups
Medical-Ultrasound-Imaging.com
former US-TIP.com
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology TIP • Medical-Ultrasound-Imaging
Copyright © 2008 - 2024 SoftWays. All rights reserved.
Terms of Use | Privacy Policy | Advertise With Us
 [last update: 2023-11-06 01:42:00]