Medical Ultrasound Imaging
Wednesday, 2 April 2025
• Welcome to
     Medical-Ultrasound-Imaging.com!
     • Sign in / Create account
 
 'Sound' p17
SEARCH   
A B C D E F G H I J K L M N O P Q R S T U V W Z 
Searchterm 'Sound' found in 496 articles
64
terms [
] - 432 definitions [
]
Result Pages :
ALOKA Co., Ltd.
www.aloka.com 'ALOKA, the innovator in ultrasound is the longest operating ultrasound company in the world with its main headquarters located in Tokyo, Japan.
The history of ALOKA began in 1950 when the medical equipment department of Japan Radio Company became the independent company, Medical and Physical Institute Co., Ltd.
In 1960, we developed the world's first commercially available diagnostic ultrasound system.
In 1976, our company name changed to ALOKA, which, in ancient Sanskrit, means 'Ray of Hope'.
ALOKA's ultrasound systems have been sold in the United States through distributors since the early 70s. Some of our major distributors included Johnson & Johnson Ultrasound and Corometrics Medical Systems, Inc., which also provided service for the ALOKA equipment.
In 1986 the first ALOKA office was opened in the United States.
And on January 1, 1991, ALOKA America began direct sales of ultrasound units.
All US sales, distribution and service are provided through our US headquarters located in Wallingford, Connecticut . In addition, we have sales, service and clinical applications representatives strategically located throughout the country to provide exceptional service to our customers.'

In November 2010 Hitachi Medical announced the acquisition of ALOKA.

Ultrasound Systems:
Acoustically Active Lipospheres
(AALs) Acoustically active lipospheres and ultrasound are under development to deliver bioactive molecules to the vascular endothelium. The AALs are similar to both ultrasound contrast agents and drug-delivering liposomes. They can carry bioactive substances using biologically inert shells and deliver those substances when disrupted by ultrasound.
The lipospheres consist of a small gas microbubble surrounded by a thick oil shell and are enclosed by an outermost lipid layer. The gas bubble contained in these vehicles makes them acoustically active, similar to ultrasound contrast agents. Acoustically active lipospheres can be nondestructively deflected using ultrasound radiation force, and fragmented with high intensity ultrasound pulses. Their lipid-oil complex can carry bioactive substances at high concentrations. An optimized sequence of ultrasound pulses can deflect the AALs toward a vessel wall then disrupt them, painting their contents across the vascular endothelium.

See also Filling Gas, and MRX 115.
Decibel
(dB) A customary logarithmic measure most commonly used (in various ways) for measuring sound. Decibel is a way to express the ratio of two sound intensities: dB=10log10I1/I2 being I1 the reference. If one sound is 1 bel (10 decibel) 'louder' than another, this means the louder sound is 10 times louder than the fainter one. A difference of 20 decibel corresponds to an increase of 10 x 10 or 100 times in intensity.
The intensity of ultrasound decreases during the propagation and is measured in db/cm.
For sound pressure (the pressure exerted by the sound waves) 0 decibel equals 20 microPascal (μPa), and for ultrasonic power 0 decibel sometimes equals 1 picoWatt.

See also dB/dt, Phon, and Logarithms.
Endocavitary Echography
The usual applications of endocavitary echography (also called internal echography / endoscopic ultrasound (EUS)) are examinations of the pelvic organs through internally introduced probes, which give a more precise and correct image.
Transrectal ultrasound is a well established method for rectal or prostate carcinoma assessment.
A transvaginal echography uses a small transducer that is inserted directly into the vagina.
Used are high-frequency (10-12 MHz) for superficial organs, endocavitary echography, and intraoperative laparoscopic ultrasound. A sterile cover is slipped over the probe, which is then covered with lubricating ultrasound gel and placed in the cavitary (see Equipment Preparation).

See also Endoscopic Ultrasound, Prostate Ultrasound, Interventional Ultrasound, Transurethral Sonography, Vaginal Probe, Rectal Probe.
Lithotripsy
(ESWL) Extracorporeal shock wave lithotripsy is a special use of kidney ultrasound, where high intensity focused ultrasound pulses are used to break up calcified stones in the kidney, bladder, or urethra. Pulses of sonic waves pulverize dense renal stones, which are then more easily passed through the ureter and out of the body in the urine. The ultrasound energy at high acoustic power levels is focused to a point exactly on the stone requiring an ultrasound scanning gel for maximum acoustic transmission.
Air bubbles in the ultrasound couplant, regardless of their size, degrade the performance of Lithotripsy and have the following effect:
Air bubbles smaller that 1/4 wavelength cause scattering of the sound waves as omni directional scatterers and less acoustic energy reaches the focal point. The result is less acoustic power at the focal point to disintegrate the kidney stone.
Air bubbles larger than 1/4 wavelength act as reflectors and deflects the acoustic energy off in a different direction. These results in less acoustic energy at the focal point.
Microbubbles dispersed throughout the ultrasound couplant layer change the average acoustic impedance of the gel layer (which reduces the total transmitted energy) and, due to refraction, change the focal point.
Result Pages :
 
Share This Page
Facebook
Twitter
LinkedIn
Look
      Ups
Medical-Ultrasound-Imaging.com
former US-TIP.com
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology TIP • Medical-Ultrasound-Imaging
Copyright © 2008 - 2025 SoftWays. All rights reserved.
Terms of Use | Privacy Policy | Advertise With Us
 [last update: 2023-11-06 01:42:00]