'Second' p9 Searchterm 'Second' found in 50 articles 1 term [ • ] - 49 definitions [• ] Result Pages : •
Side lobes are secondary and smaller acoustic beams falling outside at predictable angles located around the main lobe. See also Grating-lobe Artifact, Amplitude Shading, and Apodization. •
SonoGen (QW7437) is an anionically charged 2% perfluorocarbon emulsion under development as a transpulmonary myocardial ultrasound contrast agent (UCA). The SonoGen microbubbles have a reduced adherence to the negatively charged vascular endothelium and reduced coalescence. SonoGen, a second generation USCA has the theoretical potential to provide high safety and efficacy and improved tissue grayscale persistence compared to first generation fluorocarbon contrast agents.
Drug Information and Specification
RESEARCH NAME
DEVELOPER
INDICATION -
DEVELOPMENT STAGE Echocardiography - Phase 1
APPLICATION
Intravenous injection
TYPE
Microbubble
Surfactant
CHARGE
Negative
Dodecafluoropentane
MICROBUBBLE SIZE
-
PREPARATION
-
DO NOT RELY ON THE INFORMATION PROVIDED HERE, THEY ARE
NOT A SUBSTITUTE FOR THE ACCOMPANYING PACKAGE INSERT! •
From Bracco Diagnostics, Inc.
SonoVue® was first launched in October 2001 and is now available in all European countries. SonoVue is a second generation USCA, designed and optimized with regard to the resistance to pressure. SonoVue is an example of an important family of microbubbles whose membrane consists of phospholipids. SonoVue microbubbles are filled with sulfur hexafluoride (SF6), a gas which has a low solubility and diffuses slowly in blood for the gaseous phase of the microbubbles. In particular, the SonoVue microbubbles, thanks to the high flexibility of their shell, are strongly echogenic in a wide range of frequencies and acoustic pressure and therefore can be used with both destructive and conservative contrast bubble specific imaging methods. See also Coherent Contrast Imaging.
Drug Information and Specification
RESEARCH NAME
BR1
DEVELOPER
INDICATION -
DEVELOPMENT STAGE Contrast enhanced ultrasound -
for sale APPLICATION
Intravenous
TYPE
Microbubble
Lipids: Macrogol 4000, DSPC, DPPG, Palmitic acid
CHARGE
Negative
Sulfurhexafluoride
MICROBUBBLE SIZE
99% < 11μm
PRESENTATION
Presentation 01(with integral Bio-Set transfer system) -25 mg of dry, lyophilized powder in an atmosphere of sulphur hexafluoride in a colorless Type I glass vial, with elastomeric closure and integral transfer system.Type I glass pre-filled syringe containing 5 ml sodium chloride 0.9%w/v solution for injection. - Presentation 02 (with separate MiniSpike transfer system)
STORAGE
No special precautions for storage
PREPARATION
Reconstitute with 5 ml saline
DO NOT RELY ON THE INFORMATION PROVIDED HERE, THEY ARE
NOT A SUBSTITUTE FOR THE ACCOMPANYING PACKAGE INSERT!
Distribution Information
TERRITORY
DISTRIBUTOR
USA, EU
• The field of medical imaging offers numerous career opportunities, and one profession is that of a sonographer. Sonographers play a critical role in healthcare by utilizing ultrasound technology to create images of the body's internal structures. •
Becoming a Sonographer: The educational and professional requirements for sonographers can vary from country to country. The duration of these programs can range from one to four years, depending on the country and level of qualification. The typical path in the United States begins with obtaining a post-secondary education in diagnostic medical sonography from an accredited program. These programs usually result in an associate's or bachelor's degree. Coursework typically covers anatomy, physiology, medical ethics, ultrasound physics, and specialized sonography techniques. Additionally, students gain practical experience through clinical internships in healthcare facilities. After completing their education, aspiring sonographers can choose to obtain professional certification through organizations such as the American Registry for Diagnostic Medical Sonography (ARDMS) or the American Registry of Radiologic Technologists (ARRT). Certification often requires passing examinations that assess knowledge and competency in specific areas of sonography. Many countries also have certification or registration requirements for sonographers. These certifications are typically obtained through professional bodies or organizations specific to each country. Examples include the Canadian Association of Registered Diagnostic Ultrasound Professionals (CARDUP) in Canada, the Australian Sonographers Accreditation Registry (ASAR) in Australia, and the Society and College of Radiographers (SCoR) in the United Kingdom. •
Job Description: Sonographers are skilled professionals who operate ultrasound machines and perform sonograms on patients. They work closely with physicians and other healthcare professionals to provide accurate and high-quality diagnostic images. Using sound waves, sonographers capture images of organs, tissues, and blood flow patterns, which are then used by medical practitioners to diagnose and monitor various medical conditions. Sonographers must have a comprehensive understanding of anatomy, physiology, and sonographic techniques to optimize image quality. They interact directly with patients, explaining procedures, addressing concerns, and ensuring patient comfort throughout the scanning process. Documentation of findings and communication with the medical team are also essential responsibilities. Some aspect of the job can be demanding, while sonographers often spend long hours on their feet, positioning and maneuvering patients during scans. Dealing with patients who are in pain, anxious, or difficult to scan requires empathy, patience, and excellent interpersonal skills. Sonographers often work in fast-paced environments, juggling multiple patients and procedures throughout the day. Effective time management is essential to ensure that scans are performed efficiently without compromising quality. Adhering to schedules and meeting the demands of the healthcare facility can add to the workload and stress levels. •
Salary Outlook: The salary of a sonographer can vary, based on factors such as experience, specialization, geographic location, and work setting. According to the U.S. Bureau of Labor Statistics, as of May 2021, the median annual wage for diagnostic medical sonographers was $77,740. Sonographers working in specialized hospitals, outpatient care centers, and diagnostic imaging centers tend to earn higher salaries compared to those in physician offices or government facilities. The salary prospects for sonographers outside the United States can vary significantly based on factors such as the country's economic conditions, healthcare system, demand for sonographers, and cost of living. •
Future Outlook: The future outlook for sonographers appears highly favorable. The demand for ultrasound imaging continues to grow due to advancements in medical technology and an aging population. This increasing demand for sonographers is expected to result in good job prospects and potential career advancement opportunities. Monitoring job markets, understanding regulatory requirements, and networking with professionals in international healthcare communities can provide valuable insights into future opportunities. See also Handheld Ultrasound, Ultrasound Machine, Sonography, Portable Ultrasound Machine, Ultrasound Accessories and Supplies, Environmental Protection and Ultrasound Technology. •
Sound and ultrasound waves consist of a mechanical disturbance of a medium such as air. The disturbance passes through the medium at a fixed speed causing vibration. The rate at which the particles vibrate is the frequency, measured in cycles per second or Hertz (Hz). The pressure of sound is reported on a logarithmic scale called sound-pressure level, expressed in decibel (dB) referenced to the weakest audible 1 000 Hz sound pressure of 2*10-5 Pascal (20 mP). Sound level meters contain filters that simulate the ear's frequency response. The most commonly used filter provides what is called 'A' weighting, with the letter 'A' appended to the dB units, i.e. dBA. Sound becomes inaudible to the human ear above about 20 kHz and is then known as ultrasound. Diagnostic imaging uses much higher frequencies, in the order of MHz. See also Spatial Peak Intensity. Sound frequencies:
•
infrasound - 0 to 20 Hz;
•
audible sound - 20 Hz to 20 KHz;
•
ultrasound - greater than 20 KHz;
•
medical ultrasound - 2.5 MHz to 15 MHz.
Further Reading: Basics: Result Pages : |