'Real' p9 Searchterm 'Real' found in 60 articles 3 terms [ • ] - 57 definitions [• ] Result Pages : •
(ESWL) Extracorporeal shock wave lithotripsy is a special use of kidney ultrasound, where high intensity focused ultrasound pulses are used to break up calcified stones in the kidney, bladder, or urethra. Pulses of sonic waves pulverize dense renal stones, which are then more easily passed through the ureter and out of the body in the urine. The ultrasound energy at high acoustic power levels is focused to a point exactly on the stone requiring an ultrasound scanning gel for maximum acoustic transmission. Air bubbles in the ultrasound couplant, regardless of their size, degrade the performance of Lithotripsy and have the following effect: Air bubbles smaller that 1/4 wavelength cause scattering of the sound waves as omni directional scatterers and less acoustic energy reaches the focal point. The result is less acoustic power at the focal point to disintegrate the kidney stone. Air bubbles larger than 1/4 wavelength act as reflectors and deflects the acoustic energy off in a different direction. These results in less acoustic energy at the focal point. Microbubbles dispersed throughout the ultrasound couplant layer change the average acoustic impedance of the gel layer (which reduces the total transmitted energy) and, due to refraction, change the focal point. • View NEWS results for 'Lithotripsy' (2). ![]() ![]() Further Reading: News & More:
•
M-mode (Motion-mode) ultrasound shows the motion of cardiac structures. M-mode echocardiography records the amplitude and rate of motion of a moving structure in real time by repeatedly measuring the distance of the object from the single transducer at a given moment. The single sound beam is transmitted and reflected signals are displayed as dots of varying intensities, creating lines across the screen. It yields a one-dimensional image, sometimes called an 'ice pick' view of the heart. M-mode echocardiography is used to detect valvulopathies (calcifications, etc.) and cardiomyopathies (dyskinesis, aneurysm, etc.). See also Bicycle Stress Echocardiography, Transthoracic Echocardiography, and Transesophageal Echocardiography. ![]() Further Reading: News & More: •
The mirror artifact is similar to the reverberation artifact. Mirror image artifacts (mirroring) can occur if the acoustical impedances of the tissue is too much different and the ultrasound is reflected multiple times on tissue layers.
The echo detected does not come from the shortest sound path, the sound is reflected off an angle to another interface so that like a real mirror, the artifact shows up as the virtual object. An empyema or lung abscess can be simulated by a mirror image artifact of a hepatic cyst. This liver lesion can appear like a lesion within the lung because the wave is reflected off the diaphragm back into the liver. The angle of reflection is equal to the angle of incidence. The sound pulse hits the interfaces within the liver lesion and is reflected back to the diaphragm once again with an angle of reflection equal to the angle of incidence and then back to the transducer. Also by a pelvic ultrasound scan the sound can be reflected off the rectal air at an angle so that the deep wall of an artifactual cyst represents the mirror image of the inferior and anterior walls of the bladder. Mirror image artifacts can cause other strange appearances such as invasion of a transitional cell carcinoma through the bladder wall. Also called Cross Talk. ![]() Further Reading: News & More:
•
Gynecologic ultrasound and obstetric ultrasound are two distinct applications of ultrasound imaging that serve different purposes in the field of women's health. While both involve the use of ultrasound technology to examine the pelvic region, they have different focuses and objectives.
Gynecologic [gynaecologic, Brit.] ultrasound primarily concentrates on the evaluation of the female reproductive organs, including the uterus, ovaries, fallopian tubes, and surrounding structures. It is commonly performed for various gynecological concerns, such as abnormal bleeding, pelvic pain, infertility investigations, and monitoring of reproductive disorders. It can identify signs of inflammation, the presence of free fluid, cysts, and tumors. This non-invasive technique aids in diagnosing and monitoring gynecological pathologies, facilitating early intervention and appropriate treatment. Typically, a transabdominal sonogram is performed with a full bladder to provide an initial assessment. However, if the pelvic ultrasound reveals any abnormalities or fails to provide a clear image of the organs, a more detailed evaluation can be achieved through a transvaginal sonography. This approach allows for improved visualization of the uterus and ovaries by placing the ultrasound probe inside the vagina. Obstetric ultrasound, also known as prenatal, fetal or pregnancy ultrasound, is the branch of medical imaging that focuses on the use of ultrasound technology to assess the health and development of a fetus during pregnancy. Women with uncomplicated pregnancies commonly undergo an ultrasound examination between the 16th and 20th week of gestation. This routine assessment, performed with a real-time scanner, serves to determine accurate gestational age, monitor fetal size, and assess overall growth. The middle of the pregnancy trimester provides a crucial window for detecting many abnormalities of fetal anatomy. Advanced imaging techniques enable healthcare professionals to identify potential structural issues. Early detection of these abnormalities allows for timely intervention, counseling, and the implementation of appropriate management strategies. See also Pregnancy Ultrasound, Pelvic Ultrasound, Hysterosalpingo Contrast Sonography and Vaginal Probe. •
Ultrasound is the ideal tool to examine children of all ages. It is fast, painless, uses no ionizing radiation, and does not require a baby to remain still for long periods. Real-time modes show movement of internal tissues and organs. Advanced ultrasound imaging techniques such as color Doppler, 4D ultrasound, harmonic imaging, and higher resolution, as well as the application of ultrasound contrast agents broaden the potential of ultrasound. Pediatric [paediatric, Brit.] ultrasound can be used in all body regions and reduce the number of more invasive or radiating examinations that often additionally need sedation or intravenous iodinated contrast agents. See also Fetal Ultrasound, Reflux Sonography, Ultrasound Safety, Abdominal Ultrasound and Pregnancy Ultrasound. Result Pages : |