Medical Ultrasound Imaging
Tuesday, 3 December 2024
• Welcome to
     Medical-Ultrasound-Imaging.com!
     • Sign in / Create account
 
 'Pressure' p3
SEARCH   
A B C D E F G H I J K L M N O P Q R S T U V W Z 
Searchterm 'Pressure' found in 45 articles
3
terms [
] - 42 definitions [
]
Result Pages :
Sound
Sound and ultrasound waves consist of a mechanical disturbance of a medium such as air. The disturbance passes through the medium at a fixed speed causing vibration. The rate at which the particles vibrate is the frequency, measured in cycles per second or Hertz (Hz).
The pressure of sound is reported on a logarithmic scale called sound-pressure level, expressed in decibel (dB) referenced to the weakest audible 1 000 Hz sound pressure of 2*10-5 Pascal (20 mP). Sound level meters contain filters that simulate the ear's frequency response. The most commonly used filter provides what is called 'A' weighting, with the letter 'A' appended to the dB units, i.e. dBA.
Sound becomes inaudible to the human ear above about 20 kHz and is then known as ultrasound. Diagnostic imaging uses much higher frequencies, in the order of MHz.
See also Spatial Peak Intensity.

Sound frequencies:
infrasound - 0 to 20 Hz;
audible sound - 20 Hz to 20 KHz;
ultrasound - greater than 20 KHz;
medical ultrasound - 2.5 MHz to 15 MHz.
Decibel
(dB) A customary logarithmic measure most commonly used (in various ways) for measuring sound. Decibel is a way to express the ratio of two sound intensities: dB=10log10I1/I2 being I1 the reference. If one sound is 1 bel (10 decibel) 'louder' than another, this means the louder sound is 10 times louder than the fainter one. A difference of 20 decibel corresponds to an increase of 10 x 10 or 100 times in intensity.
The intensity of ultrasound decreases during the propagation and is measured in db/cm.
For sound pressure (the pressure exerted by the sound waves) 0 decibel equals 20 microPascal (μPa), and for ultrasonic power 0 decibel sometimes equals 1 picoWatt.

See also dB/dt, Phon, and Logarithms.
Filling Gas
The gas in microbubbles is highly compressible and, when subjected to the alternating compression and refraction pressures that constitute an ultrasound pulse, microbubbles oscillate at their natural frequency at which they resonate most strongly. This is determined by their size but is also influenced by the composition of the filling gas.
Air, sulfur hexafluoride, nitrogen, and perfluorochemicals are used as filling gases. Most newer ultrasound contrast agents use perfluorochemicals because of their low solubility in blood and high vapor pressure. By substituting different types of perfluorocarbon gases for air, the stability and plasma longevity of the agents have been markedly improved, usually lasting more than five minutes.
Microbubble Scanner Modification
Standard scanners allow visualizing microbubbles on conventional gray scale imaging in large vascular spaces. In the periphery, more sensitive techniques such as Doppler or non-linear gray scale modes must be used because of the dilution of the microbubbles in the blood pool. Harmonic power Doppler (HPD) is one of the most sensitive techniques for detecting ultrasound contrast agents.
Commonly microbubbles are encapsulated or otherwise stabilized to prolong their lifetime after injection. These bubbles can be altered by exposure to ultrasound pulses. Depending on the contrast agent and the insonating pulse, the changes include deformation or breakage of the encapsulating or stabilizing material, generation of free gas bubbles, reshaping or resizing of gas volumes.
High acoustic pressure amplitudes and long pulses increase the changes. However, safety considerations limit the pressure amplitude and long pulses decrease spatial resolution. In addition, lowering the pulse frequency increases destruction of contrast bubbles. However, at low insonation power levels, contrast agent particles resist insonation without detectable changes. Newer agents are more reflective and will usually allow gray scale imaging to be used with the advantages of better spatial resolution, fewer artifacts and faster frame rates.

Feasible imaging methods with advantages in specific acoustic microbubble properties:
Resonating microbubbles emit harmonic signals at double their resonance frequency. If a scanner is modified to select only these harmonic signals, this non-linear mode produces a clear image or trace. The effect depends on the fact that it is easier to expand a bubble than to compress it so that it responds asymmetrically to a symmetrical ultrasound wave. A special array design allows to perform third or fourth harmonic imaging. This probe type is called a dual frequency phased array transducer.

See also Bubble Specific Imaging.
Pascal
(Pa) The SI unit of pressure.
Definition: 1 Pascal is equal to 1 N/m2 = 1 J/m3 = 1 kg*m-1*s-2
1 kPa = 0.145 lbf/in2.
Air pressure is measured in hectoPascal (hPa), with 1 hPa = 1 millibar.
The unit is named for Blaise Pascal (1623-1662), French philosopher and mathematician.

See also Open Circuit Voltage, and Source Level.
Result Pages :
 
Share This Page
Facebook
Twitter
LinkedIn
Look
      Ups
Medical-Ultrasound-Imaging.com
former US-TIP.com
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology TIP • Medical-Ultrasound-Imaging
Copyright © 2008 - 2024 SoftWays. All rights reserved.
Terms of Use | Privacy Policy | Advertise With Us
 [last update: 2023-11-06 01:42:00]