'Power' p9 Searchterm 'Power' found in 126 articles 11 terms [ • ] - 115 definitions [• ] Result Pages : •
(CD) Color Doppler is an ultrasound imaging mode, which visualizes the presence, direction and velocity of flowing blood in a wide range of flow conditions. It provides an estimate of the mean velocity of flow within a vessel by color coding the flow and displaying it superimposed on the 2D gray scale image. The flow direction is arbitrarily assigned the color red or blue, indicating flow toward or away from the transducer. Color (colour, Brit.) Doppler ultrasound is capable of evaluating a wider area than other Doppler modes than for example Duplex or power Doppler, and therefore makes it less likely to miss flow abnormalities. It is also easier to interpret. Color flow is not as precise as conventional Doppler and is best used to scan a larger area and then use conventional Doppler for detailed analysis at a site of potential flow abnormality. Adjustments for color Doppler in case of too much color: Adjustments for color Doppler in case of not enough color:
•
increased color gain;
•
decrease color velocity scale;
•
adjust scanning plane and angle to flow;
•
decrease sample box size;
•
evaluation of chosen filter.
See also Color Power Doppler, Autocorrelation, Color Priority, Triplex Exam and Color Saturation. Further Reading: Basics:
News & More:
•
Efficiency is defined as the ratio of the acoustic power generated to the total electrical power input. Efficiency varies with frequency and is expressed as a percentage.
•
Equipment Preparation is an essential step in ensuring optimal ultrasound imaging quality and maintaining a safe and hygienic scanning environment. The following considerations should be taken into account:
•
Ultrasound Machine Warm-Up: The ultrasound scanner should be turned on and allowed to warm up for at least 5 minutes before initiating the examination. This allows the system to stabilize and ensures consistent performance. •
Transducer Selection: The appropriate pobe should be selected based on the type of examination required, as well as the patient's body size, weight, and habitus. Different transducer offer varying frequencies, field of view, and imaging capabilities, allowing for tailored imaging based on the specific clinical needs. •
Power Settings and Techniques: Prior to beginning the examination, it is crucial to verify and adjust the power settings and imaging techniques according to the examination protocol. This ensures that the ultrasound machine is optimized for the specific diagnostic requirements •
Acoustic Couplant Application: An adequate amount of acoustic couplant, such as warmed ultrasound gel, should be applied to the patient's skin or the transducer surface. This gel serves as a medium that promotes maximum transmission of the sound beam by eliminating air interfaces, leading to improved image quality. •
Transducer Cleaning and Probe Covers: All transducers should be cleaned and readily available for use with each patient. While endocavitary ultrasound probes are often protected by single-use disposable probe covers, it is important to maintain proper hygiene by performing a high-level disinfection of the probe between each use. Additionally, using a probe cover as an additional measure can help keep the probe clean and minimize the risk of cross-contamination. By following these equipment preparation guidelines, healthcare professionals can ensure accurate and safe ultrasound examinations while promoting infection control measures and maintaining a hygienic environment for both patients and staff. See also Environmental Protection, Portable Ultrasound Machine, Ultrasound Accessories and Supplies, and Ultrasound System Performance. •
From Biosound Esaote, Inc.; 'The Caris Plus combines the power of a conventional mainframe ultrasound system with an extraordinarily portable design. The result − High-performance ultrasound diagnostics in the most compact, most portable CFM system available anywhere. Powerful state-of-the-art microelectronics and wide-band multi-frequency technology ensure exceptional 2D, Doppler and CFM performance that can be taken where they're needed.' Specifications for this system will be available soon. •
From Philips Medical Systems;
'Clinicians are demanding smaller, higher performing systems specifically designed to meet their clinical and operational challenges. The new Philips HD11 system provides an uncompromising platform, plus advanced options in a highly mobile and easy-to-use system.'
Device Information and Specification
APPLICATIONS
Abdominal, cardiac (also for adults with TEE), musculoskeletal (also pediatric), OB/GYN, prostate, smallparts, transcranial, vascular
CONFIGURATION
17' high resolution non-interlaced flat CRT, 4 active probe ports
B-mode, M-mode, coded harmonic imaging, color flow mode (CFM), power Doppler imaging (PDI), color Doppler, pulsed wave Doppler, tissue harmonic imaging
IMAGING OPTIONS
CrossXBeam spatial compounding, coded ultrasound acquisition),speckle reduction imaging (SRI), TruScan technology store raw data, CINE review with 4 speed types
OPTIONAL PACKAGE
Transesophageal scanning, stress echo, tissue velocity imaging (TVI), tissue velocity Doppler (TVD), contrast harmonic imaging
STORAGE, CONNECTIVITY, OS
Patient and image archive, HDD, DICOM 3.0, CD/DVD, MOD, Windows-based
DATA PROCESSING
Digital beamformer with 1024 system processing channel technology
H*W*D m (inch.)
1.62 * 0.61 * 0.99 (64 * 24 * 39)
WEIGHT
246 kg (498 lbs.)
POWER CONSUMPTION
less than 1.5 KVA
Result Pages : |