Medical Ultrasound Imaging
Saturday, 23 November 2024
• Welcome to
     Medical-Ultrasound-Imaging.com!
     • Sign in / Create account
 
 'My' p7
SEARCH   
A B C D E F G H I J K L M N O P Q R S T U V W Z 
Searchterm 'My' found in 42 articles
5
terms [
] - 37 definitions [
]
Result Pages :
Medical Imaging
The definition of imaging is the visual representation of an object. Medical imaging is a broad term that encompasses various imaging modalities and techniques used in the field of medicine to visualize and study the body's anatomy and physiology. It includes both diagnostic and non-diagnostic imaging procedures, where diagnostic imaging specifically refers to the subset of medical imaging techniques that are primarily focused on diagnosing diseases or conditions. Medical imaging techniques are employed to obtain images or visual representations of the internal organs, tissues, and structures, aiding in the diagnosis, treatment, and monitoring of medical conditions.
The field of medical imaging has significantly evolved since the discovery of X-rays by Konrad Roentgen in 1896. Initially, radiological imaging involved focusing X-rays on the body and capturing the images on a single piece of film within a specialized cassette. Subsequent advancements introduced the use of fluorescent screens and special glasses for real-time visualization of X-ray images.
A significant breakthrough came with the application of contrast agents, enhancing image contrast and improving organ visualization. In the 1950s, nuclear medicine studies utilizing gamma cameras demonstrated the uptake of low-level radioactive chemicals in organs, enabling the observation of biological processes in vivo. Currently, positron emission tomography (PET) and single photon emission computed tomography (SPECT) technologies play pivotal roles in clinical research and the diagnosis of biochemical and physiological processes. Additionally, the advent of the x-ray image intensifier in 1955 facilitated the capture and display of x-ray movies.
In the 1960s, diagnostic imaging incorporated the principles of sonar, using ultrasonic waves generated by a quartz crystal. These waves, reflecting at the interfaces between different tissues, were received by ultrasound machines and translated into images through computer algorithms and reconstruction software. Ultrasound (ultrasonography) has become an indispensable diagnostic tool across various medical specialties, with immense potential for further advancements such as targeted contrast imaging, real-time 3D or 4D ultrasound, and molecular imaging. The first use of ultrasound contrast agents (USCA) dates back to 1968.
Digital imaging techniques were introduced in the 1970s, revolutionizing conventional fluoroscopic image intensifiers. Godfrey Hounsfield's pioneering work led to the development of the first computed tomography (CT) scanner. Digital images are now electronic snapshots represented as grids of dots or pixels. X-ray CT brought about a breakthrough in medical imaging by providing cross-sectional images of the human body with high contrast between different types of soft tissue. These advancements were made possible by analog-to-digital converters and computers. The introduction of multislice spiral CT technology dramatically expanded the clinical applications of CT scans.
The first magnetic resonance imaging (MRI) devices were tested on clinical patients in 1980. With technological improvements, such as higher field strength, more open MRI magnets, faster gradient systems, and novel data-acquisition techniques, MRI has emerged as a real-time interactive imaging modality capable of providing detailed structural and functional information of the body.
Today, imaging in medicine offers a wide range of modalities, including:
X-ray projection imaging;
Fluoroscopy;
Computed tomography (CT / CAT);
Single photon emission computed tomography (SPECT);
Positron emission tomography (PET);
Mammography.

These imaging modalities have become integral components of modern healthcare. With the rapid advancement of digital imaging, efficient management has become important, leading to the expansion of radiology information systems (RIS) and the adoption of Picture Archiving and Communication Systems (PACS) for digital image archiving. In telemedicine, real-time transmission of all medical image modalities from MRI to X-ray, CT and ultrasound has become the standard. The field of medical imaging continues to evolve, promising further innovations and advancements in the future, ultimately contributing to improved patient care and diagnostics.

See also History of Ultrasound Contrast Agents, and History of Ultrasound.
Medison Co.,Ltd.
www.medison.com 'Founded in Seoul in 1985 by a team of research scientists from Korea's leading technology research institute, Medison rapidly established a reputation for innovation in digital imaging technology. By 1994, the company had attained ISO 9001 certification for its ultrasound systems and had established a worldwide distribution network covering more than 80 countries'

In 1998 Medison established a strategic alliance with Philips (formerly ATL, USA).

Samsung Electronics acquired Medison in December 2010 on its way to become a top tier medical equipment manufacturer. In March 2011 the company got renamed to Samsung Medison.

Ultrasound Systems:

Obstetric and Gynecologic Ultrasound
Gynecologic ultrasound and obstetric ultrasound are two distinct applications of ultrasound imaging that serve different purposes in the field of women's health. While both involve the use of ultrasound technology to examine the pelvic region, they have different focuses and objectives.

Gynecologic [gynaecologic, Brit.] ultrasound primarily concentrates on the evaluation of the female reproductive organs, including the uterus, ovaries, fallopian tubes, and surrounding structures. It is commonly performed for various gynecological concerns, such as abnormal bleeding, pelvic pain, infertility investigations, and monitoring of reproductive disorders. It can identify signs of inflammation, the presence of free fluid, cysts, and tumors. This non-invasive technique aids in diagnosing and monitoring gynecological pathologies, facilitating early intervention and appropriate treatment. Typically, a transabdominal sonogram is performed with a full bladder to provide an initial assessment. However, if the pelvic ultrasound reveals any abnormalities or fails to provide a clear image of the organs, a more detailed evaluation can be achieved through a transvaginal sonography. This approach allows for improved visualization of the uterus and ovaries by placing the ultrasound probe inside the vagina.

Obstetric ultrasound, also known as prenatal, fetal or pregnancy ultrasound, is the branch of medical imaging that focuses on the use of ultrasound technology to assess the health and development of a fetus during pregnancy. Women with uncomplicated pregnancies commonly undergo an ultrasound examination between the 16th and 20th week of gestation. This routine assessment, performed with a real-time scanner, serves to determine accurate gestational age, monitor fetal size, and assess overall growth. The middle of the pregnancy trimester provides a crucial window for detecting many abnormalities of fetal anatomy. Advanced imaging techniques enable healthcare professionals to identify potential structural issues. Early detection of these abnormalities allows for timely intervention, counseling, and the implementation of appropriate management strategies.
See also Pregnancy Ultrasound, Pelvic Ultrasound, Hysterosalpingo Contrast Sonography and Vaginal Probe.
POINT Biomedical Corp.
www.acusphere.com [This entry is marked for removal.]

'POINT Biomedical was a privately held pharmaceutical company, founded in 1996 to pursue technologies related to imaging and drug delivery. POINT's core technology was based upon an ultrasonically responsive two-layer, biodegradable microsphere or BiSphere™. One of the most important features of this technology is the ability to noninvasively trigger the BiSpheres™ to release their contents at sites within the body using externally generated pulses of ultrasound. From this basic platform, POINT was developing a pipeline of products that leverage the unique properties of the BiSphere™ technology in the areas of imaging and therapeutics. POINT has initially focused development of this platform on the assessment of tissue specific blood flow. The lead product, CARDIOsphere®, is a pharmaceutical agent that will enable cardiologists to perform myocardial perfusion imaging studies in the office setting using ultrasound rather than more expensive and cumbersome nuclear medicine (or radioisotope) techniques.'
'According to BioSpace, Tom Feldman, ex-CEO of Point BioMedical, the company's lead investor, Vendanta Capital has chosen not to follow through with the second half of its $50 million private equity financing. Point BioMedical has withdrawn the new drug application for its molecular imaging agent CARDIOsphere and is liquidating its assets to avoid a formal bankruptcy proceeding in 2008.'

Power Doppler
(PD) Power Doppler imaging (PDI) is a Doppler technique, sensitive to low blood flow, allowing a complete visualization of detailed vascular blood structure. This medical imaging method is useable for detecting microbubbles during myocardial contrast echocardiography.

See also Resistive Index.
Result Pages :
 
Share This Page
Facebook
Twitter
LinkedIn
Look
      Ups
Medical-Ultrasound-Imaging.com
former US-TIP.com
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology TIP • Medical-Ultrasound-Imaging
Copyright © 2008 - 2024 SoftWays. All rights reserved.
Terms of Use | Privacy Policy | Advertise With Us
 [last update: 2023-11-06 01:42:00]