Medical Ultrasound Imaging
Thursday, 30 January 2025
• Welcome to
     Medical-Ultrasound-Imaging.com!
     • Sign in / Create account
 
 'Microbubbles' p7
SEARCH   
A B C D E F G H I J K L M N O P Q R S T U V W Z 
Searchterm 'Microbubbles' found in 60 articles
1
term [
] - 59 definitions [
]
Result Pages :
...
...
EchoGen®
EchoGen® is a fluorocarbon-based (dodecafluoropentane) third generation USCA. EchoGen® consists of microbubbles stabilized with surfactants in a phase shift colloid emulsion (perflenapent). EchoGen® requires no preparation, reconstitution, or refrigeration.
Perflenapent emulsion would represent a significant advance in contrast echocardiography caused by effective and long lasting opacification of the left ventricle and enhanced endocardial border delineation.
The persistence of the contrast effect permits interrogation in multiple echocardiographic views, as well as the visualization and localization of myocardial perfusion deficits at rest by producing a negative contrast effect.
October 12, 2000
Sonus Pharmaceuticals, Inc. announced a strategic decision to refocus the Company on the development of its drug delivery and blood substitute products. At the same time, Sonus has withdrawn the NDA (New Drug Application) and discontinued clinical activity for its ultrasound contrast product, EchoGen®.
August 06, 2001
Sonus Pharmaceuticals, Inc. announced that it has entered into an agreement to sell its ultrasound contrast assets for $6.5 million to Amersham plc. As part of the agreement, Sonus has also assigned to Nycomed its interest in the ultrasound contrast patent license agreement entered into with Chugai Pharmaceutical Co. Ltd. and Molecular Biosystems Inc in January 2001.
Drug Information and Specification
RESEARCH NAME
QW3600
INDICATION -
DEVELOPMENT STAGE
APPLICATION
Intravenous
TYPE
Microbubble
-
CHARGE
Negative
Dodecafluoropentane
MICROBUBBLE SIZE
-
PRESENTATION
-
STORAGE
Refrigerate 2−8 °C
PREPARATION
Finished product
DO NOT RELY ON THE INFORMATION PROVIDED HERE, THEY ARE
NOT A SUBSTITUTE FOR THE ACCOMPANYING PACKAGE INSERT!
Echocardiography
Echocardiography is the ultrasound examination of the heart. Depending on the used ultrasound system, echocardiograms can be two-dimensional slices or 3D real-time images of the heart. Based on the ultrasound principles the direction and speed of blood flow can be utilized e.g., to diagnose a leaking or stenosed valve or to identify intracardiac shunts.

Different types of echocardiography:
contrast echocardiogram (CE);

The transthoracic echocardiogram (images are taken through the chest wall) is a non-invasive, highly accurate and quick assessment of the overall health of the heart.
A more invasive method is to insert a specialized scope containing an echocardiography transducer (TEE probe) into the esophagus, and record images from there. The advantages are clearer images, since the transducer is closer to the heart.
Contrast echocardiogram (CE) is already a valuable tool to delineate endocardial borders, direct invasive procedures, detect intracardiac shunts, assess myocardial perfusion and viability, and quantify coronary flow reserve and blood volumes (see also hemoglobin). The mechanism of microbubble CE is based on the physical principles of rarefaction and compression, leading to volume pulsations of microbubbles, and it is this change that results in CE signal.
Stress echocardiograms are echocardiography exams used for detection of coronary artery disease.

See also Diastole, Bicycle Stress Echocardiography, Resistive Index, and M-Mode Echocardiography.
Echovist-200®
From Bayer Schering Pharma AG:
Echovist-200® was an effectively one-pass-only contrast medium for contrast sonography and Doppler-echocardiographic examinations for the detection, exclusion or follow-up of pathological states leading to hemodynamic changes. Because of the short intravascular life of the microparticles and microbubbles, transit through the pulmonary circulation is unusual. In cardiac evaluations Echovist-200® has been replaced by newer ultrasound contrast agents (USCA), therefore the manufacturing was discontinued.
Another range of echo contrast application is the female genital tract, in particular for the demonstration or exclusion of acquired or congenital changes of the uterine cavity and for the visualization of the Fallopian tubes and investigation of their patency.
1 g Echovist-200 granules contain 1 g D-galactose microparticles. 1 ml aqueous solution for production of the suspension contains 200 mg D-galactose.
Brand names in other countries: Ecovist.
Drug Information and Specification
RESEARCH NAME
-
INDICATION
Hysterosalpingo-contrast sonography (HyCoSy), echocardiographic use in neonates and children
APPLICATION
Intravenous injection
TYPE
Microbubble
D-GALACTOSE®
Air
MICROBUBBLE SIZE
99 % < 12 μm, 95 % < 8 μm
STORAGE
Store below 30 °C
PRESENTATION
Vials of 20 ml with 3.0 g granulate incl. one vial of 15 ml containing 13.5 ml D-galactose solution, one mini-spike
PREPARATION
Reconstitute with water
DO NOT RELY ON THE INFORMATION PROVIDED HERE, THEY ARE
NOT A SUBSTITUTE FOR THE ACCOMPANYING PACKAGE INSERT!
Harmonic Imaging
Harmonic imaging relies on detection of harmonics of the transmitted frequency produced by bubble oscillation. This method is widely available on ultrasound scanners and uses the same array transducers as conventional imaging. A major limitation of the use of ultrasound contrast agents is the problem that signals from the microbubbles are mixed with those from tissue. Echoes from solid tissue and red blood cells are suppressed by harmonic imaging.
In harmonic mode, the system transmits at one frequency, but is tuned to receive echoes preferentially at double that frequency, and the second harmonic echoes from the place of the bubble. Typically, the transmit frequency lies between 1.5 and 3 MHz and the receive frequency is selected by means of a bandpass filter whose center frequency lies between 3 and 6 MHz.
Color Doppler and real-time harmonic spectral Doppler modes have also been implemented and show a level of tissue motion suppression not available in conventional modes.

See also Harmonic B-Mode Imaging, and Harmonic Power Doppler.
History of Ultrasound
The earliest introduction of vascular ultrasound contrast agents (USCA) was by Gramiak and Shah in 1968, when they injected agitated saline into the ascending aorta and cardiac chambers during echocardiographic to opacify the left heart chamber. Strong echoes were produced within the heart, due to the acoustic mismatch between free air microbubbles in the saline and the surrounding blood.
In 1880 the Curie brothers discovered the piezoelectric effect in quartz. Converse piezoelectricity was mathematically deduced from fundamental thermodynamic principles by Lippmann in 1881.
In 1917, Paul Langevin (France) and his coworkers developed an underwater sonar system (called hydrophone) that uses the piezoelectric effect to detect submarines through echo location.
In 1935, the first RADAR system was produced by the British physicist Robert Watson-Wat. Also about 1935, developments began with the objective to use ultrasonic power therapeutically, utilizing its heating and disruptive effects on living tissues. In 1936, Siemens markets the first ultrasonic therapeutic machine, the Sonostat.
Shortly after the World War II, researchers began to explore medical diagnostic capabilities of ultrasound. Karl Theo Dussik (Austria) attempted to locate the cerebral ventricles by measuring the transmission of ultrasound beam through the skull. Other researchers try to use ultrasound to detect gallstones, breast masses, and tumors. These first investigations were performed with A-mode.
Shortly after the World War II, researchers in Europe, the United States and Japan began to explore medical diagnostic capabilities of ultrasound. Karl Theo Dussik (Austria) attempted to locate the cerebral ventricles by measuring the transmission of ultrasound beam through the skull. Other researchers, e.g. George Ludwig (United States) tried to use ultrasound to detect gallstones, breast masses, and tumors. This first experimentally investigations were performed with A-mode. Ultrasound pioneers contributed innovations and important discoveries, for example the velocity of sound transmission in animal soft tissues with a mean value of 1540 m/sec (still in use today), and determined values of the optimal scanning frequency of the ultrasound transducer.
In the early 50`s the first B-mode images were obtained. Images were static, without gray-scale information in simple black and white and compound technique. Carl Hellmuth Hertz and Inge Edler (Sweden) made in 1953 the first scan of heart activity. Ian Donald and Colleagues (Scotland) were specialized on obstetric and gynecologic ultrasound research. By continuous development it was possible to study pregnancy and diagnose possible complications.
After about 1960 two-dimensional compound procedures were developed. The applications in obstetric and gynecologic ultrasound boomed worldwide from the mid 60's with both, A-scan and B-scan equipment. In the late 60's B-mode ultrasonography replaced A-mode in wide parts.
In the 70's gray scale imaging became available and with progress of computer technique ultrasonic imaging gets better and faster.
After continuous work, in the 80's fast realtime B-mode gray-scale imaging was developed. Electronic focusing and duplex flow measurements became popular. A wider range of applications were possible.
In the 90's, high resolution scanners with digital beamforming, high transducer frequencies, multi-channel focus and broad-band transducer technology became state of the art. Optimized tissue contrast and improved diagnostic accuracy lead to an important role in breast imaging and cancer detection. Color Doppler and Duplex became available and sensitivity for low flow was continuously improved.
Actually, machines with advanced ultrasound system performance are equipped with realtime compound imaging, tissue harmonic imaging, contrast harmonic imaging, vascular assessment, matrix array transducers, pulse inversion imaging, 3D and 4D ultrasound with panoramic view.

Result Pages :
...
...
 
Share This Page
Facebook
Twitter
LinkedIn
Look
      Ups
Medical-Ultrasound-Imaging.com
former US-TIP.com
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology TIP • Medical-Ultrasound-Imaging
Copyright © 2008 - 2024 SoftWays. All rights reserved.
Terms of Use | Privacy Policy | Advertise With Us
 [last update: 2023-11-06 01:42:00]