Medical Ultrasound Imaging
Thursday, 21 November 2024
• Welcome to
     Medical-Ultrasound-Imaging.com!
     • Sign in / Create account
 
 'M-Mode Echocardiography' 
SEARCH   
A B C D E F G H I J K L M N O P Q R S T U V W Z 
Searchterm 'M-Mode Echocardiography' found in 7 articles
1
term [
] - 4 definitions [
] - 2 booleans [
]
Result Pages :
M-Mode Echocardiography
M-mode (Motion-mode) ultrasound shows the motion of cardiac structures. M-mode echocardiography records the amplitude and rate of motion of a moving structure in real time by repeatedly measuring the distance of the object from the single transducer at a given moment. The single sound beam is transmitted and reflected signals are displayed as dots of varying intensities, creating lines across the screen. It yields a one-dimensional image, sometimes called an 'ice pick' view of the heart.
M-mode echocardiography is used to detect valvulopathies (calcifications, etc.) and cardiomyopathies (dyskinesis, aneurysm, etc.).

See also Bicycle Stress Echocardiography, Transthoracic Echocardiography, and Transesophageal Echocardiography.
Bicycle Stress Echocardiography
Bicycle stress echocardiography can be used instead of treadmill. Bicycle exercise is particularly useful for patients with valvular heart disease or for evaluated pulmonary artery pressures. It is also used as a substitute for treadmill exercise testing when the heart performance at each stage of exercise needs to be assessed and the patient is capable of bicycle exercise. Bicycle stress echocardiography has no additional risk compared to routine exercise.

See also M-Mode Echocardiography.
Cardiac Ultrasound
Cardiac ultrasound, also known as echocardiography or echocardiogram, is used to provide several different levels and types of heart testing. Cardiac ultrasound utilizes the same ultrasound principles as used for obstetric and gynecologic evaluations of pregnant women, gallbladder ultrasound and other abdominal structures.
The ultrasound is directed out of a hand held probe which can be moved to image the heart from different positions. Additionally, so that heart events can be timed, ECG leads are placed on the chest. The reflected wave is converted into an actual image of the heart and displayed in a real-time mode or M-mode ultrasound format. M-mode recordings permit measurement of cardiac dimensions and detailed analysis of complex motion patterns depending on transducer angulations. Also the time relationships with other physiological variables such as ECG, heart sounds, and pulse tracings, can be recorded simultaneously. A stress echocardiogram provides information about the cardiac performance.
Two-dimensional tomographic images of selected cardiac sections give more information than M-mode about the shape of the heart and also show the spatial relationships of its structures during the cardiac cycle (diastole to systole).

See also M-Mode Echocardiography, and Myocardial Contrast Echocardiography.
Echocardiography
Echocardiography is the ultrasound examination of the heart. Depending on the used ultrasound system, echocardiograms can be two-dimensional slices or 3D real-time images of the heart. Based on the ultrasound principles the direction and speed of blood flow can be utilized e.g., to diagnose a leaking or stenosed valve or to identify intracardiac shunts.

Different types of echocardiography:
contrast echocardiogram (CE);

The transthoracic echocardiogram (images are taken through the chest wall) is a non-invasive, highly accurate and quick assessment of the overall health of the heart.
A more invasive method is to insert a specialized scope containing an echocardiography transducer (TEE probe) into the esophagus, and record images from there. The advantages are clearer images, since the transducer is closer to the heart.
Contrast echocardiogram (CE) is already a valuable tool to delineate endocardial borders, direct invasive procedures, detect intracardiac shunts, assess myocardial perfusion and viability, and quantify coronary flow reserve and blood volumes (see also hemoglobin). The mechanism of microbubble CE is based on the physical principles of rarefaction and compression, leading to volume pulsations of microbubbles, and it is this change that results in CE signal.
Stress echocardiograms are echocardiography exams used for detection of coronary artery disease.

See also Diastole, Bicycle Stress Echocardiography, Resistive Index, and M-Mode Echocardiography.
Transesophageal Echocardiography
(TEE) Transesophageal echocardiography provides a superior view of cardiac anatomy compared with transthoracic echocardiography. TEE is performed by the introduction of a probe attached to a fiberoptic endoscope into the esophagus. Caused by the position close to the heart e.g., clot finding and the view of the mitral valve are improved.

Indications:
aortic atherosclerotic disease;
aortic dissection;
artificial mitral valves;
clots inside the left atrium;
cardiac infections;
masses or clots in the heart.

The piezoelectric crystal creating the acoustic power is mounted on the gastroscope that must be swallowed by the patient. This endoscopic transducer is miniaturized to approximately the size of a fingernail. Usually the probe is in place for an average of 15 minutes, to numb the surface a topical anesthetic is sprayed into the throat, in addition a conscious sedation is recommended.

See also Myocardial Contrast Echocardiography, Stress Echocardiogram, M-Mode Echocardiography, Contrast Enhanced Ultrasound and Vascular Ultrasound Contrast Agents.
Result Pages :
 
Share This Page
Facebook
Twitter
LinkedIn

Look
      Ups
Medical-Ultrasound-Imaging.com
former US-TIP.com
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology TIP • Medical-Ultrasound-Imaging
Copyright © 2008 - 2024 SoftWays. All rights reserved.
Terms of Use | Privacy Policy | Advertise With Us
 [last update: 2023-11-06 01:42:00]