Medical Ultrasound Imaging
Thursday, 21 November 2024
• Welcome to
     Medical-Ultrasound-Imaging.com!
     • Sign in / Create account
 
 'Intensity' p6
SEARCH   
A B C D E F G H I J K L M N O P Q R S T U V W Z 
Searchterm 'Intensity' found in 59 articles
11
terms [
] - 48 definitions [
]
Result Pages :
...
...
Absorbed Dose
In physics, the absorbed dose is the ultrasonic power absorbed per unit of mass of an object, and is measured in watts per kilogram (W/kg). The absorption increases with ultrasound intensity and frequency.
The thermal index describes the potential for heating of the patient's tissue due to the application of energy.

See also Thermal Effect, Ultrasound Safety, Ultrasound Regulations.
Acoustic Power
The acoustic power of sound and ultrasound is the energy delivered per unit of time. The power is measured in Watt (W) and is proportional to the square of the amplitude.
1 W = 1 joule/second.

See also Directivity Index, Spatial Average Intensity, and Source Level.
Acoustically Active Lipospheres
(AALs) Acoustically active lipospheres and ultrasound are under development to deliver bioactive molecules to the vascular endothelium. The AALs are similar to both ultrasound contrast agents and drug-delivering liposomes. They can carry bioactive substances using biologically inert shells and deliver those substances when disrupted by ultrasound.
The lipospheres consist of a small gas microbubble surrounded by a thick oil shell and are enclosed by an outermost lipid layer. The gas bubble contained in these vehicles makes them acoustically active, similar to ultrasound contrast agents. Acoustically active lipospheres can be nondestructively deflected using ultrasound radiation force, and fragmented with high intensity ultrasound pulses. Their lipid-oil complex can carry bioactive substances at high concentrations. An optimized sequence of ultrasound pulses can deflect the AALs toward a vessel wall then disrupt them, painting their contents across the vascular endothelium.

See also Filling Gas, and MRX 115.
Attenuation
Attenuation is the reduction of power, for example due to the passage through a medium or electrical component. In ultrasound imaging, attenuation means the decrease in amplitude and intensity as a sound wave travels through a medium. In ultrasound attenuation is often characterized as the half-value layer, or the half-power distance. These terms refer to the distance that ultrasound will travel in a particular tissue before its energy is attenuated to half its original value.

Attenuation originates through:
divergence of the wavefront;
absorption of wave energy;
elastic reflection of wave energy;
elastic scattering of wave energy.

A thick muscled chest wall will offer a significant obstacle to the transmission of ultrasound. Non-muscle tissue such as fat does not attenuate acoustic energy as much. The half-value layer for bone is still less than muscle, that's why bone is such a barrier to ultrasound.

See also Attenuation Coefficient, and Derated Quantity.
Backscattering
Ultrasound waves are reflected when there is a change in acoustic impedance. The larger the change, the more ultrasound is reflected. Microbubbles have an enormous difference in acoustic impedance as compared to surrounding fluid due to the large differences in density, elasticity and compressibility.
At low acoustic power (mechanical index less than 0.1), the mechanism of ultrasound reflection is that of Rayleigh scattering and the microbubbles may be regarded as point scatterers. The scattering strength of a point scatterer is proportional to the sixth power of the particle radius and to the fourth power of the ultrasound frequency;; the echogenicity of such contrast agent is therefore highly dependent upon particle size and transmit frequency. The backscattered intensity of a group of point scatterers is furthermore directly proportional to the total number of scatterers in the insonified volume. The concentration of the contrast medium is of importance.

See also Backscatter Energy, Cross-section Scattering.
Result Pages :
...
...
 
Share This Page
Facebook
Twitter
LinkedIn
Look
      Ups
Medical-Ultrasound-Imaging.com
former US-TIP.com
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology TIP • Medical-Ultrasound-Imaging
Copyright © 2008 - 2024 SoftWays. All rights reserved.
Terms of Use | Privacy Policy | Advertise With Us
 [last update: 2023-11-06 01:42:00]