Medical Ultrasound Imaging
Tuesday, 3 December 2024
• Welcome to
     Medical-Ultrasound-Imaging.com!
     • Sign in / Create account
 
 'Impedance' p5
SEARCH   
A B C D E F G H I J K L M N O P Q R S T U V W Z 
Searchterm 'Impedance' found in 24 articles
2
terms [
] - 22 definitions [
]
Result Pages :
Point Scatterer
A point scatterer is a reflector with a diameter much smaller than the ultrasound wavelength. The reflection from blood is a typical example of point scattering. Red blood cells are with 7μm versus 0.44 mm wavelength at 3.5 MHz, smaller than any US wavelength. The individual cells are not only the point scatterers, ultrasound is scattered whenever there is a change in acoustic impedance, and in blood such changes are caused by variable cell concentration. These local fluctuations in cell concentration have a spatial extent that is also much smaller than the ultrasound wavelength, and they therefore act as point scatterers.
A point scatterer gives rise to spherical wavelets spreading out in all directions with the scatterer itself at the center of the sphere. The spherical wavelets from one single point scatterer are much too weak to be detected by the transducer, but constructive interference between numerous wavelets will produce backscattering of higher amplitude echoes with parallel wavefronts, also in the direction of the ultrasound transducer.

See also Rayleigh Scattering.
Reverberation Artifact
Reverberation artifacts are produced from the multiple reflections from an object if the acoustical impedances of tissue layers are too much different and the detected echo does not run the shortest sound path because it bounces back and forth between the object and the transducer. In a reverberation artifact, the sound wave is reflected back into the body from the transducer-skin interface.
Ultrasound Physics
Ultrasound physics is based on the fact that periodic motion emitted of a vibrating object causes pressure waves. Ultrasonic waves are made of high pressure and low pressure (rarefactional pressure) pulses traveling through a medium.

Properties of sound waves:

The speed of ultrasound depends on the mass and spacing of the tissue molecules and the attracting force between the particles of the medium. Ultrasonic waves travels faster in dense materials and slower in compressible materials. Ultrasound is reflected at interfaces between tissues of different acoustic impedance e.g., soft tissue - air, bone - air, or soft tissue - bone.
The sound waves are produced and received by the piezoelectric crystal of the transducer. The fast Fourier transformation converts the signal into a gray scale ultrasound picture.

The ultrasonic transmission and absorption is dependend on:
refraction.

See also Sonographic Features, Doppler Effect and Thermal Effect.
Ultrasound Picture
Unlike regular sound, ultrasound can be directed into a single direction. The echoes received by a stationary probe will result in a single dimensional signal showing peaks for every major material change.
To generate a 2D picture, the probe is swiveled, either mechanically or through a phased array of ultrasound transducers. The data is analyzed by computer and used to construct the image. In a similar way, 3D pictures can be generated by computer using a specialized probe. In this way, a photo of an unborn baby may be made.
Some ultrasonography machines can produce color pictures, of sorts. Doppler ultrasonography is color coded onto a gray scale picture. From the amount of energy in each echo, the difference in acoustic impedance can be calculated and a color is then assigned accordingly.

See also Densitometry and 3D Ultrasound.
Result Pages :
 
Share This Page
Facebook
Twitter
LinkedIn
Look
      Ups
Medical-Ultrasound-Imaging.com
former US-TIP.com
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology TIP • Medical-Ultrasound-Imaging
Copyright © 2008 - 2024 SoftWays. All rights reserved.
Terms of Use | Privacy Policy | Advertise With Us
 [last update: 2023-11-06 01:42:00]