'GE Healthcare' p5 Searchterm 'GE Healthcare' found in 23 articles 1 term [ • ] - 14 definitions [• ] - 8 booleans [• ]Result Pages : •
Environmental protection in ultrasound imaging involves adopting practices and technologies that minimize the environmental impact associated with the use of ultrasound equipment and disposables. Here are some key considerations: •
Energy Efficiency: Opt for energy-efficient ultrasound machines and equipment that are designed to minimize energy consumption. This helps reduce the overall environmental impact associated with power usage. •
Digitalization and Paper Reduction: Embrace digital imaging and archiving systems to reduce reliance on paper. Storing images and reports electronically minimizes paper consumption, printing supplies, and physical storage space. •
Waste Management: Implement proper waste management practices for ultrasound-related disposables, such as ultrasound gel bottles, probe covers, and cleaning materials. Follow local regulations for the disposal of medical waste and prioritize recycling and responsible disposal methods. •
Equipment Lifespan and Disposal: Choose ultrasound equipment known for its durability and longevity. Maximizing the lifespan of equipment reduces the frequency of replacements, minimizing electronic waste generation. When disposing of old equipment, ensure proper recycling and disposal in accordance with local regulations. •
Education and Awareness: Promote education and awareness among ultrasound professionals about environmentally conscious practices. Encourage staff to adopt energy-saving habits, such as turning off equipment when not in use, and emphasize the importance of responsible waste management. Develop standardized and optimized examination protocols to minimize the duration and number of ultrasound scans required per patient. This helps reduce the energy consumption associated with prolonged imaging sessions and decreases the overall environmental impact. By focusing on energy efficiency, digitalization, waste management, equipment lifespan, and education, healthcare facilities can make significant strides towards reducing their carbon footprint and the environmental impact of ultrasound imaging practices. See also Ultrasound System Performance, Equipment Preparation, Ultrasound Accessories and Supplies and Sonographer. •
Equipment Preparation is an essential step in ensuring optimal ultrasound imaging quality and maintaining a safe and hygienic scanning environment. The following considerations should be taken into account:
•
Ultrasound Machine Warm-Up: The ultrasound scanner should be turned on and allowed to warm up for at least 5 minutes before initiating the examination. This allows the system to stabilize and ensures consistent performance. •
Transducer Selection: The appropriate pobe should be selected based on the type of examination required, as well as the patient's body size, weight, and habitus. Different transducer offer varying frequencies, field of view, and imaging capabilities, allowing for tailored imaging based on the specific clinical needs. •
Power Settings and Techniques: Prior to beginning the examination, it is crucial to verify and adjust the power settings and imaging techniques according to the examination protocol. This ensures that the ultrasound machine is optimized for the specific diagnostic requirements •
Acoustic Couplant Application: An adequate amount of acoustic couplant, such as warmed ultrasound gel, should be applied to the patient's skin or the transducer surface. This gel serves as a medium that promotes maximum transmission of the sound beam by eliminating air interfaces, leading to improved image quality. •
Transducer Cleaning and Probe Covers: All transducers should be cleaned and readily available for use with each patient. While endocavitary ultrasound probes are often protected by single-use disposable probe covers, it is important to maintain proper hygiene by performing a high-level disinfection of the probe between each use. Additionally, using a probe cover as an additional measure can help keep the probe clean and minimize the risk of cross-contamination. By following these equipment preparation guidelines, healthcare professionals can ensure accurate and safe ultrasound examinations while promoting infection control measures and maintaining a hygienic environment for both patients and staff. See also Environmental Protection, Portable Ultrasound Machine, Ultrasound Accessories and Supplies, and Ultrasound System Performance. •
Fetal ultrasound is a safe and non-invasive imaging technique used to visualize and monitor the development of a fetus during pregnancy. It employs high-frequency sound waves to create detailed images of the baby, the placenta, and the uterus. Fetal ultrasound provides valuable information about the baby's growth, organ development, and overall well-being. It is commonly used to determine gestational age, assess fetal anatomy, detect abnormalities, and monitor fetal movements and heart rate. This essential tool enables healthcare professionals to ensure the optimal health of both the mother and the baby throughout the pregnancy. The FDA (Food and Drug Administration) has established regulations governing ultrasound usage, including specific guidelines for fetal ultrasound examinations. These regulations permit an eight-fold increase in ultrasound intensity for fetal scans. They place considerably responsibility on the user to understand the output measurements, the mechanical index (MI), the thermal index (TI) and to use them in their scanning. The primary safety concern in prenatal diagnostic imaging is temperature rise. It is known that hyperthermia is teratogenic. The efforts of investigators have concentrated on defining the temperature increases and exposure times which may give rise to biological effects and on determining the ultrasound levels which might, in turn, lead to those temperature rises. In fetal ultrasound, the highest temperature increase would be expected to occur at bone and the thermal index with bone at/near the focus (TIB) would give the 'worst case' conditions. The mechanical index and thermal index must be displayed if the ultrasound system is capable of exceeding an index of 1. The displayed indices are based on the manufacturer's experimental and modeled data. However, an independent study has demonstrated significant discrepancies over declared spatial peak time averaged intensity (I-SPTA) output of up to 400%. See also ALARA Principle, Pregnancy Ultrasound and Doppler Fluximetry in Pregnancy. Further Reading: Basics:
Result Pages : |