Medical Ultrasound Imaging
Sunday, 24 November 2024
• Welcome to
     Medical-Ultrasound-Imaging.com!
     • Sign in / Create account
 
 'Frequency' p6
SEARCH   
A B C D E F G H I J K L M N O P Q R S T U V W Z 
Searchterm 'Frequency' found in 161 articles
10
terms [
] - 151 definitions [
]
Result Pages :
...
...
Harmonic
Harmonic is an oscillation of a system at a frequency that is a simple multiple of its fundamental frequency. The fundamental frequency of a sinusoidal oscillation is called the first harmonic. The second harmonic has a frequency doubled that of the fundamental.

See also Fundamental Imaging, Harmonic Imaging, Subharmonic Imaging and Superharmonic Imaging.
Harmonic B-Mode Imaging
Harmonic B-mode imaging takes advantage of the non-linear oscillation of microbubbles. During harmonic imaging, the sound signal is transmitted at a frequency of around 1.5 to 2.0 MHz and received at twice this frequency. The microbubbles also reflect waves with wavelengths different from the transmitted one, the detectors can be set to receive only the latter ones and create only images of the contrast agent.
Using bandpass filters the transmitted frequency is separated from the received signal to get improved visualization of vessels containing ultrasound contrast agents (USCAs). The signal to noise ratio during the presence of microbubbles in tissue is four- to fivefold higher at the harmonic compared with the basic frequency.
Using harmonic B-mode imaging, harmonic frequencies produced by the ultrasound propagation through tissue have to be taken into account. The tissue reflection produces only a small amount harmonic energy compared to USCAs, but has to be removed by background subtraction for quantitative evaluation of myocardial perfusion.

See also Non-linear Propagation.
Aliasing Artifact
Echoes of deep lying structures within the body do not always come from the latest emitted sound pulse and can produce an aliasing artifact. Aliasing lowers the frequency components when the pulse repetition frequency is less than 2 times the highest frequency of a Doppler signal. This artifact can be problematical at Spectral or Color Doppler examinations.
Aliasing of the data displayed in pulsed wave technology is utilized as a benefit in determining transitions from laminar to turbulent flow.

See also Ultrasound Imaging Modes.
Apogee 3500
www.siui.com/english/product/3500.htm From SIUI Inc.;
'Dedicated to ultrasound industry, Shantou Institute of Ultrasonic Instruments, Inc. (SIUI) has launched Apogee 3500, the Digital Color Doppler Ultrasound Imaging System.
With latest imaging technologies, high-definition image quality and excellent practical functions, the Apogee 3500 offers optimal solutions for clinical ultrasonic examination.'

'The Apogee 3500 is available with many high-density, super broadband and multi-frequency probes, such as convex, micro-convex, linear, vaginal, rectal and phased array probes, which are widely applied for different clinical diagnoses, including abdomen (liver, kidney, gall-bladder, pancreas), gynecology (uterus, ovary), obstetrics (early pregnancy, basic OB, complete OB, multi gestation, fetal echo), cardiology (adult and pediatric cardiology), small parts (thyroid, galactophore, testicles, neonate), peripheral vascular and prostate.'

Device Information and Specification
APPLICATIONS
CONFIGURATION
Normal system, color - gray scale(256)
Linear, convex and phased array
PROBES STANDARD
1 * Super broadband convex probe, 1* super-broadband linear probe, 1* phased array probe
2.0 MHz ~ 12.0 MHz, broad band, tri-frequency
B-mode (B, 2B, 4B), M-mode, B/M-mode, real-time compound imaging, panoramic imaging, trapezoidal imaging (linear probes), spectrum Doppler (PWD and CWD), color Doppler flow imaging (CDFI), color power angio (CPA), tissue harmonic imaging (THI)
IMAGING OPTIONS
Real-time ZOOM, zoom rate and position selectable
OPTIONAL PACKAGE
Linear, convex, micro-convex, vaginal, rectal, biplane probes; CD-RW drive; DICOM 3.0 interface and software; ...
H*W*D m
1.29 * 0.52 * 0.75
WEIGHT
110 kg
POWER REQUIREMENT
AC 220V/110V, 50Hz/60Hz
POWER CONSUMPTION
0.6 KVA
Attenuation Coefficient
This coefficient is a quantification of the energy intensity loss of waves (electromagnetic or mechanical) due to attenuation. In ultrasound imaging it is the relative energy intensity loss per traveled centimeter. The ultrasound attenuation coefficient is measured in units of dB/cm. The attenuation coefficient in soft tissues is nearly proportional to the ultrasound frequency. The attenuation coefficient is doubled when the frequency is doubled.
This coefficient (dB/cm) divided by the frequency (MHz) is almost constant in a given tissue.
blood: 0.2 MHz x dB/cm;
fatty tissue: 0.6 MHz x dB/cm;
liver: 0.9 MHz x dB/cm;
soft tissue: 0.5-1.0 MHz x dB/cm.

Result Pages :
...
...
 
Share This Page
Facebook
Twitter
LinkedIn
Look
      Ups
Medical-Ultrasound-Imaging.com
former US-TIP.com
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology TIP • Medical-Ultrasound-Imaging
Copyright © 2008 - 2024 SoftWays. All rights reserved.
Terms of Use | Privacy Policy | Advertise With Us
 [last update: 2023-11-06 01:42:00]