Medical Ultrasound Imaging
Thursday, 21 November 2024
• Welcome to
     Medical-Ultrasound-Imaging.com!
     • Sign in / Create account
 
 'Flow' p6
SEARCH   
A B C D E F G H I J K L M N O P Q R S T U V W Z 
Searchterm 'Flow' found in 124 articles
13
terms [
] - 111 definitions [
]
Result Pages :
...
...
Doppler Angle
The Doppler angle (theta) is the angle of incidence between the ultrasound beam and the estimated flow direction (parallel to the long axis of the vessel). If the beam is parallel to the flowing blood, the Doppler angle is zero, and the determination of flow is most accurate.

See also Beam Vessel Angle, Doppler Effect and Doppler Ultrasound.
Doppler Shift
Doppler Shift is the change in the perceived frequency relative to the transmitted frequency. The Doppler shift is dependent on the insonating frequency, the velocity of moving blood, and the angle between the sound beam and direction of moving blood.
Doppler equation:
Doppler shift frequency: fD = fr - f0 = 2f0v/c
Where fD is the Doppler shift frequency = the difference between transmitted and received frequencies.
Ultrasound system use the following equation:
Doppler shift frequency with incident angle: fD = 2f0v/c cosØ
Where f is the transmitted frequency, v is the blood velocity, c is the speed of sound in tissue, cosØ is the Cosine of the blood flow to beam angle.
The Doppler angle (theta) is the angle of incidence of the beam upon the object. If the beam is parallel to the flowing blood, the angle theta is zero, and the determination of flow is most accurate. If the angle of incidence is greater, the results are less reliable. Doppler shift results with an angle greater than 20° should not be used for the calculation.

See also Doppler Interrogation Frequency, Zero Crossing Detector, Doppler Effect, Doppler Ultrasound and Motion Discrimination Detector.
Pulsatility Index
(PI) The pulsatility index quantifies the shape of the blood velocity waveform by the ratio of the flow volume amplitude and mean flow volume.

See also Pulsatile Flow.
Spectral Analysis
Spectral analysis is the quantitative analysis method to display the distribution of frequencies. A difficult Doppler signal is separated into the frequency components so that the range of frequencies in a Doppler shifted signal can be analyzed. This allows measurement of blood flow velocity by positioning of a probing cursor in the artery (on the screen), and the signal representing blood flow velocity is generated. The peaks and ebbs create the spectrum, corresponding to systolic and diastolic blood flow. The signal is both visual and auditory.
Transducer Types
Transducers can be divided in:
1.) Transducers where the sound wave is transmitted and received by different elements.
2.) Transducers where multiple elements part of the time transmit and part of the time receive sound energy.
The first type of ultrasound transducer is used in detection of blood flow (also called nonimaging transducers). For example, the continuous wave transducer (Pedoff transducer) has two separate elements, where one element is always transmitting while the other element is always receiving.
Probes of the second type are used to image cardiac structures and have the capability to use various Doppler techniques to detect blood flow (also called imaging transducers). For example, continuous wave, pulsed wave, high pulse repetition frequency, color flow, M-mode, and 2D-mode are the various modes that this type of transducer can perform.

Transducers can also be divided in mechanical and electronic or phased scan types.
Mechanical transducers use a combination of single element oscillation, multiple element rotation, or a single element and set of acoustic mirrors to generate the sweeping beam for 2D mode. Caused by the vibration (created as the mirrors rotate or oscillate inside the cover) is this type sometimes called the 'wobbler'. Mechanical transducers are cheaper than electronic transducers.
Different types of electronic or phased array probes can create a linear or rectangular shaped scan plane as well as a sector or pie shaped scan plane. Sector scanners are most useful for cardiac ultrasound examinations where the beam is directed between the ribs to image the heart. A linear array transducer is more useful in abdominal, OB/GYN, and small parts examinations. Electronic transducers are more expensive but they provide dynamic focusing and smaller probe.

See also Rectangular Array Transducer.
Result Pages :
...
...
 
Share This Page
Facebook
Twitter
LinkedIn
Look
      Ups
Medical-Ultrasound-Imaging.com
former US-TIP.com
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology TIP • Medical-Ultrasound-Imaging
Copyright © 2008 - 2024 SoftWays. All rights reserved.
Terms of Use | Privacy Policy | Advertise With Us
 [last update: 2023-11-06 01:42:00]