Medical Ultrasound Imaging
Saturday, 23 November 2024
• Welcome to
     Medical-Ultrasound-Imaging.com!
     • Sign in / Create account
 
 'Far Field' p2
SEARCH   
A B C D E F G H I J K L M N O P Q R S T U V W Z 
Searchterm 'Far Field' found in 9 articles
1
term [
] - 7 definitions [
] - 1 boolean [
]
Result Pages :
Rectangular Array Transducer
The elements of a rectangular array transducer (also called matrix transducer) are arranged in a rectangular pattern. Rectangular arrays with unequal rows (e.g. 3, 5, 7) of transducer elements are in real 2D (two-dimensional), but they are termed 1.5D, because the number of rows is much less than the number of columns. Their main advantage is electronic focusing even in the elevation plane (z-plane).
The transducers that are termed 2D have an equal number of rows and columns. 2D transducers have the potential to provide real-time 3D ultrasound imaging without moving the transducer.
Active matrix array transducers have several elements in the short axis and in addition multiple elements along the long axis. This allows electronic focusing in both axes, resulting in a narrower elevation axis beam width in the near field and far field.

Sonographic Features
Anatomic structures respond with characteristic features on ultrasound scanning.
There are some ultrasound terms, referring to the echo appearance, that describes tissue appearance in a uniform manner:
hyperechoic or hyperechogenic (bright);
hypoechoic or hypoechogenic;
anechoic or anechogenic;
homogenous (uniform echo pattern);
heterogeneous (irregular echo pattern).

Tendons characteristically are hyperechoic on ultrasound because of the fibrillar pattern. Ligaments appear hyperechoic when the beam is perpendicular to the tissue. Peripheral nerves are hyperechoic relative to muscle.
Muscle appears relatively hypoechoic to tendon fibers. Close observation reveals hypoechoic muscle fibers separated by hyperechoic septae that converge on a hyperechoic aponeurosis. Articular hyaline cartilage appears hypoechoic. The presence of fluid within the joint outlining the cartilage produces a thin bright echo at this interface.
Sound beams do not penetrate the bone cortex. The very bright echo produced at the interface allows both recognition of the bone cortex but also can demonstrate fracture, spurring and bone callus bridging. Abnormal soft tissue calcification and ossification also produces bright reflective echoes.
Cysts or fluid filled areas are without internal echoes and are called echo free or anechoic and may demonstrate enhanced soft tissue echoes posterior to the fluid collection. Inflamed metatarsal bursae and calcaneal bursae clearly depict fluid swelling.

See also Beam Pattern and Zero Offset.
Sound Beam
(short for ultrasound beam) The sound beam is the confined, directional beam of ultrasound traveling as a longitudinal wave from the transducer face into the propagation medium. The near field and the far field are two separate regions along the beam. Sound beams are either steered mechanically or electrically. Both rapidly sweep sound waves through tissues.

See also Sheer Wave, Beam Vessel Angle, Beam Steering, and Huygens Principle.
Ultrasound Radiation Force
The traveling ultrasonic wave causes a low-level ultrasound radiation force when this energy is absorbed in tissues (absorbed dose). This force produces a pressure in the direction of the beam and away from the transducer. It should not be confused with the oscillatory pressure of the ultrasound wave itself. The pressure that results and the pressure gradient across the beam are very low, even for intensities at the higher end of the range of diagnostic ultrasound. Mechanical effects like radiation forces lead to stress at tissue interfaces. The effect of the force is manifest in volumes of fluid where streaming can occur with motion within the fluid. The fluid velocities which result are low and are unlikely to cause damage.
The effects of ultrasound radiation force (also called Bjerknes Forces) were first reported in 1906 by C. A. and V. F. K. Bjerknes, when they observed the attraction and repulsion of air bubbles in a sound field.
While incompressible objects do experience radiation forces, compressible objects driven at their resonant frequency experience far larger forces and can be observably displaced by low-amplitude ultrasound waves. A microbubble driven near its resonance frequency experiences a large net radiation force in the direction of ultrasound wave propagation. Ultrasound pulses of many cycles can deflect resonant microbubbles over distances on the order of millimeters.
In addition to primary radiation force, which acts in the direction of acoustic wave propagation, a secondary radiation force for which each individual bubble is a source and receptor causes the microspheres to attract or repel each other. The result of this secondary force is that a much larger concentration of microbubbles collects along a vessel wall than might otherwise occur.

See also Acoustically Active Lipospheres.
Result Pages :
 
Share This Page
Facebook
Twitter
LinkedIn
Look
      Ups
Medical-Ultrasound-Imaging.com
former US-TIP.com
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology TIP • Medical-Ultrasound-Imaging
Copyright © 2008 - 2024 SoftWays. All rights reserved.
Terms of Use | Privacy Policy | Advertise With Us
 [last update: 2023-11-06 01:42:00]