Medical Ultrasound Imaging
Tuesday, 3 December 2024
• Welcome to
     Medical-Ultrasound-Imaging.com!
     • Sign in / Create account
 
 'Doppler Velocity Signal' 
SEARCH   
A B C D E F G H I J K L M N O P Q R S T U V W Z 
Searchterm 'Doppler Velocity Signal' found in 10 articles
1
term [
] - 2 definitions [
] - 7 booleans [
]
Result Pages :
Doppler Velocity Signal
The Doppler velocity signal refers to a signal whose voltage is proportional to the Doppler frequency shift, obtained by a frequency-to-voltage conversion of the Doppler signal.

See also Autocorrelation, Temporal Mean Velocity, Doppler Effect, Doppler Ultrasound and Maximum Venous Outflow.
Doppler Techniques
Doppler techniques are dependent on the transducers used. The transducer operating in continuous wave mode utilizes one half of the elements and is continuously sending sound energy while the other half is continuously receiving the reflected signals. If the transducer is being used in a pulsed wave mode, the whole transducer is used to send and then receive the returning signals.
Pulsed wave techniques allow the accurate measurement of blood flow at a specific area in the heart and the detection of both velocity and direction. Measurement is performed by timing the reception of the returning signals giving a view of flows at specific depths. The region where flow velocities are measured is called the sample volume. Errors in the accuracy of the information arise if the velocities exceed a certain speed. The highest velocity accurately measured is called the Nyquist limit.
Continuous Wave Doppler
Used for accurate measurement of high Velocity flow. A disadvantage is the poor range of resolution.
Pulsed Wave Doppler
Used for the measurement of velocities at a specific location with a good range of resolution. A disadvantage is the imprecise measuring of high velocities.

See also Doppler Velocity Signal and Doppler Effect.
Transmit Voltage Response
(TVR) The transmit voltage response is the level of the acoustic output referenced to one meter per one volt input.

See also Transmit Current Response, Doppler Velocity Signal, Analog Output Signal, and Digital to Analog Converter.
Color Doppler Imaging
(CDI) Color Doppler imaging depicts the mean frequency shifts of the Doppler signal. Color [colour, Brit.] Doppler imaging is a method for visualizing direction and velocity of movement, such as of blood flow within the cardiac chambers or blood vessels. The flow direction and velocity information gathered by Doppler ultrasonography is color coded onto a gray scale cross-sectional image. The sensitivity of Doppler ultrasound is increased in conjunction with the use of vascular contrast agents.
Direction and blood flow velocity are coded as colors and shades:
Red - flow coming nearer to the probe.
Blue - flow coming away of the probe.

See also Bi-directional Illumination, Color Map.
Bubble Specific Imaging
Bubble specific imaging methods rely usually on non-linear imaging modes. These contrast imaging techniques are designed to suppress the echo from tissue in relation to that from a microbubble contrast agent.
Stimulated acoustic emission (SAE) and phase / pulse inversion imaging mode (PIM) are bubble specific modes, which can image the tissue specific phase.
In SAE mode bubble rupture is seen as a transient bright signal in B-mode and as a characteristic mosaic-like effect in velocity 2D color Doppler.
PIM are Doppler modes and detect non-linear echoes from microbubbles. In pulse inversion imaging modes the transducer bandwidth extends, resulting in improved spatial resolution and more contrast.

See also Contrast Pulse Sequencing, Microbubble Scanner Modification, Narrow Bandwidth, Contrast Medium, Dead Zone.
Result Pages :
 
Share This Page
Facebook
Twitter
LinkedIn

Look
      Ups
Medical-Ultrasound-Imaging.com
former US-TIP.com
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology TIP • Medical-Ultrasound-Imaging
Copyright © 2008 - 2024 SoftWays. All rights reserved.
Terms of Use | Privacy Policy | Advertise With Us
 [last update: 2023-11-06 01:42:00]