Medical Ultrasound Imaging
Saturday, 23 November 2024
• Welcome to
     Medical-Ultrasound-Imaging.com!
     • Sign in / Create account
 
 'Doppler Angle' p3
SEARCH   
A B C D E F G H I J K L M N O P Q R S T U V W Z 
Searchterm 'Doppler Angle' found in 13 articles
1
term [
] - 2 definitions [
] - 10 booleans [
]
Result Pages :
Color Doppler
(CD) Color Doppler is an ultrasound imaging mode, which visualizes the presence, direction and velocity of flowing blood in a wide range of flow conditions. It provides an estimate of the mean velocity of flow within a vessel by color coding the flow and displaying it superimposed on the 2D gray scale image. The flow direction is arbitrarily assigned the color red or blue, indicating flow toward or away from the transducer.
Color (colour, Brit.) Doppler ultrasound is capable of evaluating a wider area than other Doppler modes than for example Duplex or power Doppler, and therefore makes it less likely to miss flow abnormalities. It is also easier to interpret. Color flow is not as precise as conventional Doppler and is best used to scan a larger area and then use conventional Doppler for detailed analysis at a site of potential flow abnormality.

Adjustments for color Doppler in case of too much color:
decreased color gain;
increased color velocity scale;
evaluation of chosen filter.

Adjustments for color Doppler in case of not enough color:
increased color gain;
decrease color velocity scale;
adjust scanning plane and angle to flow;
decrease sample box size;
evaluation of chosen filter.

See also Color Power Doppler, Autocorrelation, Color Priority, Triplex Exam and Color Saturation.
Angle of Incidence
(Doppler look angle) The angle of incidence is the angle at which the ultrasound beam strikes an interface, or the angle at which the Doppler beam intersects the blood flow. Doppler signals are best obtained at angles of 60° or less.

See also Snells Law.
3D Ultrasound
In 3D ultrasound (US) several 2D images are acquired by moving the probe across the body surface or rotating inserted probes. 3D-mode uses the same basic concept of a 2D ultrasound but rather than take the image from a single angle, the sonographer takes a volume image. The volume image that is displayed on the screen is a software rendering of all of the detected soft-tissue combined by specialized computer software to form three-dimensional images.
The 3D volume rendering technique (VR) does not rely on segmentation (segmentation techniques are difficult to apply to ultrasound pictures) and makes it possible to obtain clear 3D ultrasound images for clinical diagnosis. A 3D ultrasound produces a still image. Diagnostic US systems with 3D display functions and linear array probes are mainly used for obstetric and abdominal applications. The combination of contrast agents, harmonic imaging and power Doppler greatly improves 3D US reconstructions.

3D imaging shows a better look at the organ being examined and is used for:
Detection of abnormal fetus development, e.g. of the face and limbs.
Visualization of e.g. the colon and rectum.
Detection of cancerous and benign tumors, e.g. tumors of the prostate gland, and breast lesions.
Pictures of blood flow in various organs or a fetus.

Fusion 3D imaging methods for generating compound images from two sets of ultrasound images (B-mode and Doppler images) enable the observation of the structural relationships between lesions and their associated blood vessels in three dimensions (maximum intensity projection).
Result Pages :
 
Share This Page
Facebook
Twitter
LinkedIn
Look
      Ups
Medical-Ultrasound-Imaging.com
former US-TIP.com
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology TIP • Medical-Ultrasound-Imaging
Copyright © 2008 - 2024 SoftWays. All rights reserved.
Terms of Use | Privacy Policy | Advertise With Us
 [last update: 2023-11-06 01:42:00]