'Display' p3 Searchterm 'Display' found in 81 articles 1 term [ • ] - 80 definitions [• ] Result Pages : •
Ultrasound technology has evolved significantly, providing sonographers with a wide range of ultrasound machines. As technology has advanced, portable ultrasound equipment, including handheld ultrasound systems, have emerged in the field of medical imaging. However, these devices may have limited imaging capabilities and reduced image quality compared to larger systems. Types of ultrasound systems compiled according to their portability: •
Handheld Ultrasound Devices: Handheld ultrasound devices are compact, lightweight, and easily maneuverable. They offer convenience and point-of-care imaging capabilities, making them ideal for emergency medicine, primary care, and remote settings. Pros include portability, rapid assessments, and ease of use. However, these devices may have limited imaging capabilities and reduced image quality compared to larger systems. •
Laptop-Based Ultrasound Scanner: Laptop-based ultrasound machines combine portability with a larger display and enhanced imaging capabilities. They are versatile and suitable for various applications, including primary care, obstetrics, and musculoskeletal imaging. These machines provide good image quality, a user-friendly interface, and improved storage capacity. However, they may still be bulkier and less portable than handheld devices. •
Console-Based Ultrasound Systems:
Console-based ultrasound machines are larger, stationary systems commonly found in hospitals and specialized imaging centers. They offer comprehensive imaging capabilities, advanced features, and excellent image quality. These machines are suitable for a wide range of specialties and can perform complex examinations. Pros include high image resolution, advanced imaging modes, and comprehensive data management. However, they lack the portability and immediate accessibility of handheld or laptop-based devices.
•
Cart-Based Ultrasound Machines: Cart-based ultrasound machines strike a balance between portability and advanced imaging capabilities. They consist of a console unit mounted on a mobile cart. These machines are commonly used in hospitals, clinics, and larger healthcare facilities. They provide excellent image quality, a wide range of imaging options, and ergonomic considerations. While less portable than handheld or laptop-based devices, cart-based machines offer enhanced functionality and versatility. In summary, pros and cons of portable ultrasound machines: •
Pros: Compact portable ultrasound machines eliminate transfers and reduce wait times, improving patient comfort. Scans at the bedside minimize discomfort and anxiety while optimizing workflow efficiency. Sonographers can quickly assess patients and detect abnormalities. Real-time examinations provide immediate visualization, procedural guidance, and support for critical decision-making especially in emergency, critical care, and resource-limited settings. •
Cons: Portable ultrasound machines may have restricted features and imaging modes compared to larger systems, potentially affecting diagnostic quality and detail. The compact size can lead to compromises in image resolution and overall quality due to factors like lower power output and smaller transducers.The small displays and simplified controls of portable systems may pose challenges for sonographers, potentially impacting workflow efficiency and user fatigue. Portable ultrasound machines often come with a higher price tag, requiring careful evaluation of cost versus expected benefits and specific practice needs. See also Ultrasound Accessories and Supplies, Environmental Protection, Sonographer, Ultrasound Technology and Equipment Preparation. Further Reading: News & More:
•
Spectral Doppler refers to the combination of either continuous wave Doppler or pulsed Doppler with a spectral display. Spectral Doppler provides a quantitative analysis of the velocity and direction of blood flow. The Fourier spectrum analyzer performs a fast Fourier transformation on the Doppler signal. The amplitudes of the resulting spectra are encoded as brightness. In the 2D spectral display, the frequency shift is depicted in the vertical and the time in the horizontal axis. The range of blood velocities in the volume produces a corresponding range of frequency shifts. See also Acceleration Index and Triplex Exam. •
(TI) The definition of the thermal index is the ratio of the total acoustic power to that required raising a maximum temperature increase of 1 °C under defined assumptions. A thermal index of 1 indicates the acoustic power achieving a temperature increase of 1 °C. A thermal index of 2 has the doubled power but would not necessarily indicate a peak temperature rise of 2 °C. The temperature rise is dependent on tissue type and is particularly dependent on the presence of bone. Classifications of thermal indices:
•
TIS - thermal index soft tissue;
•
TIB - thermal index bone - bone at/near the focus;
•
TIC - thermal index cranial bone - bone at the surface.
For fetal ultrasound, the highest temperature increase would be expected occurring at bone. Therefore, TIB gives the worst-case conditions. If the ultrasound system can exceed an index of 1, the mechanical index and thermal index must be displayed. The displayed indices are based on the manufacturer's data. See also Cranial Bone Thermal Index, Bone Thermal Index, Soft Tissue Thermal Index. Further Reading: Basics:
News & More: •
A transducer is a device, usually electrical or electronic, that converts one type of energy to another. Most transducers are either sensors or actuators. A transducer (also called probe) is a main part of the ultrasound machine. The transducer sends ultrasound waves into the body and receives the echoes produced by the waves when it is placed on or over the body part being imaged. Ultrasound transducers are made from crystals with piezoelectric properties. This material vibrates at a resonant frequency, when an alternating electric current is applied. The vibration is transmitted into the tissue in short bursts. The speed of transmission within most soft tissues is 1540 m/s, producing a transit time of 6.5 ms/cm. Because the velocity of ultrasound waves is constant, the time taken for the wave to return to the transducer can be used to determine the depth of the object causing the reflection. The waves will be reflected when they encounter a boundary between two tissues of different density (e.g. soft tissue and bone) and return to the transducer. Conversely, the crystals emit electrical currents when sound or pressure waves hit them (piezoelectric effect). The same crystals can be used to send and receive sound waves; the probe then acts as a receiver, converting mechanical energy back into an electric signal which is used to display an image. A sound absorbing substance eliminates back reflections from the probe itself, and an acoustic lens focuses the emitted sound waves. Then, the received signal gets processed by software to an image which is displayed at a monitor. Transducer heads may contain one or more crystal elements. In multi-element probes, each crystal has its own circuit. The advantage is that the ultrasound beam can be controlled by changing the timing in which each element gets pulsed. Especially for cardiac ultrasound it is important to steer the beam. Usually, several different transducer types are available to select the appropriate one for optimal imaging. Probes are formed in many shapes and sizes. The shape of the probe determines its field of view. Transducers are described in megahertz (MHz) indicating their sound wave frequency. The frequency of emitted sound waves determines how deep the sound beam penetrates and the resolution of the image. Most transducers are only able to emit one frequency because the piezoelectric ceramic or crystals within it have a certain inherent frequency, but multi-frequency probes are also available. See also Blanking Distance, Damping, Maximum Response Axis, Omnidirectional, and Huygens Principle. Further Reading: News & More:
•
Ultrasound machines, widely used in medical imaging, are essential tools in the field of diagnostic ultrasound. These devices utilize high-frequency sound waves to create real-time images of internal body structures. Ultrasound machines consist of several key components that work together to generate diagnostic images.
These include:
•
The transducer is a handheld device that emits and receives sound waves. It converts electrical energy into sound waves and captures the returning echoes to create images.
•
The control panel houses the interface where the sonographer adjusts imaging parameters such as depth, frequency, and gain. It allows for customization of imaging settings based on the clinical requirements. The transducer pulse controls change the amplitude, frequency and duration of the pulses emitted from the transducer probe.
•
The central processing unit (CPU) serves as the brain of the ultrasound machine, processing the acquired data and transforming it into images. It handles complex calculations, image optimization, data storage and contains the electrical power supplies for itself and the transducer probe.
•
The display monitor (oscilloscope, tablet, computer monitor, etc.) showcases the real-time ultrasound images produced by the machine. It provides visual feedback to the sonographer, aiding in the interpretation and analysis of anatomical structures. Handheld ultrasound devices and mobile ultrasound probes can be connected wirelessly to a smartphone or tablet via Bluetooth or WiFi. These end device serves then as the ultrasound monitor.
•
Data input and measurements are done with the keyboard cursor (trackball). Ultrasound devices used for handheld point of care ultrasound (HPOCUS) are operated via the touch screen of the control panel.
•
Images are captured, reviewed, stored and transmitted digitally, using a standard format for digital imaging and communications in medicine (DICOM). Disk storage devices (FDD, HDD, CD, DVD) are outdated, but may be used in older machines to store the acquired images if no picture archiving and communication system (PACS) connection is possible.
•
The displayed ultrasound pictures are usually digitally stored in a PACS. The images from portable ultrasound machines can be stored and conveniently managed on the end device itself, the inserted memory card or in the cloud. With a QR scanner, the images can be accessed via the Internet in the cloud. Often there is also the possibility to get a picture of a baby sonography as a printout.
B-mode machines represent the vast majority of machines used in echocardiology, obstetrical scans, abdominal scans, gynecological scans, etc. B-mode ultrasound machines usually produce the sector (or pie segment-shaped) scans. These ultrasound scans require either a mechanical scanner transducer (the transducer moves to produce the sector scan), or a linear array transducer operated as a phased array. Ultrasound machines come in different types, each catering to specific clinical needs. The two primary types are stationary and portable ultrasound machines: •
Stationary units are typically larger in size and are installed in dedicated imaging rooms. These machines offer advanced imaging capabilities and a wide range of specialized features. They are commonly found in hospitals, clinics, and university medical centers where comprehensive imaging services are provided.
•
Portable units (see Portable Ultrasound Machine), as the name suggests, are compact and lightweight, designed for on-the-go imaging. These machines are highly versatile and offer excellent mobility, allowing healthcare professionals to bring the ultrasound system directly to the patient's bedside. Portable ultrasound machines are particularly useful in emergency settings, rural healthcare facilities, and point-of-care applications.
See also Handheld Ultrasound, Ultrasound System Performance, Equipment Preparation, Coaxial Cable, and Microbubble Scanner Modification, Environmental Protection and Ultrasound Accessories and Supplies. Further Reading: Basics: News & More:
Result Pages : |