Medical Ultrasound Imaging
Tuesday, 3 December 2024
• Welcome to
     Medical-Ultrasound-Imaging.com!
     • Sign in / Create account
 
 'Contrast Enhanced Ultrasound' p4
SEARCH   
A B C D E F G H I J K L M N O P Q R S T U V W Z 
Searchterm 'Contrast Enhanced Ultrasound' found in 24 articles
1
term [
] - 14 definitions [
] - 9 booleans [
]
Result Pages :
Contrast Harmonic Imaging
(CHI) Contrast harmonic imaging is an ultrasound technique to improve the measurement of blood perfusion or capillary blood flow. Based on the nonlinear properties of contrast agents, CHI transmits at the fundamental frequency but receives at the second harmonic. Contrast enhanced echo signals contain significant energy components at higher harmonics (bubbles acts as harmonic oscillators), while tissue echoes do not. Caused by that contrast signal can be separated from tissue echoes by the characteristic signal.
In combination with the pulse inversion technique, CHI promises very high contrast agent sensitivity with high spatial resolution.

See also Ultrasound Contrast Agent Safety and Hemoglobin.
Left Ventricular Opacification
(LVO) Ultrasound contrast agents improve the echocardiography assessment of left ventricular function and the low sensitivity of changes in left ventricular ejection fraction (LVEF). In addition, harmonic imaging techniques and automated border detection (ABD) together with contrast enhanced left ventricular opacification increase endocardial border delineation (EBD) and the results compared to native echocardiography.
Pulse Inversion Imaging
(PII) Pulse inversion imaging (also called phase inversion imaging) is a non-linear imaging method specifically made for enhanced detection of microbubble ultrasound contrast agents. In PII, two pulses are sent in rapid succession into the tissue; the second pulse is a mirror image of the first. The resulting echoes are added at reception. Linear scattering of the two pulses will give two echoes which are inverted copies of each other, and these echoes will therefore cancel out when added.
Linear scattering dominates in tissues. Echoes from linear scatterers such as tissue cancel, whereas those from gas microbubbles do not. Non-linear scattering of the two pulses will give two echoes which do not cancel out completely due to different bubble response to positive and negative pressures of equal magnitude. The harmonic components add, and the signal intensity difference between non-linear and linear scatterers is therefore increased. The resulting images show high sensitivity to bubbles at the resolution of a conventional image.
In harmonic imaging, the frequency range of the transmitted pulse and the received signal should not overlap, but this restriction is less in pulse inversion imaging since the transmit frequencies are not filtered out, but rather subtracted. Broader transmit and receive bandwidths are therefore allowed, giving shorter pulses and improved axial resolution, hence the alternative term wideband harmonic imaging. Many ultrasound machines offer some form of pulse inversion imaging.

See also Pulse Inversion Doppler, Narrow Bandwidth, Dead Zone, Ultrasound Phantom.
Transcranial Doppler
(TCD) Transcranial color Doppler sonography allows to evaluate the presence and flow direction of vessels as well as their relationships to surrounding structures.
A disadvantage of cerebrovascular ultrasonography is the attenuation of the ultrasound signal by the skull. The loss of power through the skull is considerable, the signal to noise ratio is poor and so contrast enhanced Doppler imaging is advantageous. The use of ultrasound contrast agents provides a diagnostic window of sufficient duration and imaging quality to improve an evaluation of the cerebral vessels. Contrast TCD also results in visualization of small arteries and veins and greater length of these vessels.

See also A-Mode, Cranial Bone Thermal Index, Transcranial Color Coded Sonography and Transcranial Window.
Liver Sonography
A liver sonography is a diagnostic tool to image the liver and adjoining upper abdominal organs such as the gallbladder, spleen, and pancreas. Deeper structures such as liver and pancreas are imaged at a lower frequency 1-6 MHz with lower axial and lateral resolution but greater penetration. The diagnostic capabilities in this area can be limited by gas in the bowel scattering the sound waves.
The application of microbubbles may be useful for detection of liver lesions and for lesion characterization. Some microbubbles have a liver-specific post vascular phase where they appear to be taken up by the reticuloendothelial system (RES). Dynamic contrast enhanced scans in a similar way as with CT or MRI can be used to studying the arterial, venous and tissue phase.
After a bolus injection, early vascular enhancement is seen at around 30sec in arterialized lesions (e.g., hepatocellular carcinomas (HCC), focal nodular hyperplasia (FNH)). Later enhancement is typical of hemangiomas with gradually filling towards the center. In the late phase at around 90sec, HCCs appear as defects against the liver background. Most metastases are relatively hypovascular and so do not show much enhancement and are seen as signal voids in the different phases.
Either with an intermittent imaging technique or by continuous scanning in a nondestructive, low power mode, characteristic time patterns can be used to differentiate lesions.

See also Medical Imaging, B-Mode, High Intensity Focused Ultrasound, Ultrasound Safety and Contrast Medium.
Result Pages :
 
Share This Page
Facebook
Twitter
LinkedIn
Look
      Ups
Medical-Ultrasound-Imaging.com
former US-TIP.com
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology TIP • Medical-Ultrasound-Imaging
Copyright © 2008 - 2024 SoftWays. All rights reserved.
Terms of Use | Privacy Policy | Advertise With Us
 [last update: 2023-11-06 01:42:00]