Medical Ultrasound Imaging
Sunday, 24 November 2024
• Welcome to
     Medical-Ultrasound-Imaging.com!
     • Sign in / Create account
 
 'Contrast' p7
SEARCH   
A B C D E F G H I J K L M N O P Q R S T U V W Z 
Searchterm 'Contrast' found in 147 articles
18
terms [
] - 129 definitions [
]
Result Pages :
...
...
Bayer Schering Pharma AG
www.schering.de The Germany-based pharmaceutical company is the result of the take-over of Schering AG by Bayer AG in 2006. The Bayer Schering Pharma AG is part of the Bayer HealthCare AG, which represents the pharmaceutical part of the Bayer Group.
The company makes ultrasound, x-ray and MRI contrast media, drugs for treating cancer, multiple-sclerosis, heart and nervous system disorders and severe skin conditions.
In general, its activities are focused on four business areas: Fertility control & hormone therapy, diagnostics & radiopharmaceuticals, dermatology as well as specialized therapeutics for disabling diseases in the fields of the central nervous system, oncology and cardiovascular system.
Currently, Bayer Schering Pharma discontinued the manufacturing and development of ultrasound contrast agents.


Ultrasound Contrast Agents:
Contact Information
MAIL
Bayer Schering Pharma AG
51368 Leverkusen
GERMANY
PHONE
+49-30-46-81-2431
FAX
+49-30-46-81-8195
Bolus Injection
A bolus is a rapid infusion of high dose contrast agent. Dynamic and accumulation phase imaging can be performed after bolus injection. Since the transit time of the bolus is only a short time, images with high frame rate show the wash in and wash out of the contrast material. The injection rate and the total injected volume modifies the bolus peak profile. Substantial changes in the concentrations during signal acquisition induce artifacts. Furthermore, the hemodynamic parameters (cardiac output, blood pressure) influence the bolus profile. However, the characteristics of ultrasound contrast agents are favorable with a continuous perfusion.

See also Negative Bolus.
Echogenicity
Echogenicity is the ability of a medium to create an echo, for example to return a signal when tissue is in the path of the sound beam. The ultrasound echogenicity is dependent on characteristics of tissues or contrast agents and is measured by calculating the backscattering and transmission coefficients as a function of frequency.
The fundamental parameters that determine echogenicity are density and compressibility. Blood is two to three orders of magnitude less echogenic than tissue due to the relatively small impedance differences between red blood cells and plasma. The tissue echogenicity can be increased by ultrasound contrast agents. Encapsulated microbubbles are highly echogenic due to differences in their compressibility and density, compared to tissue or plasma.
Microbubbles are 10,000 times more compressible than red blood cells. The compressibility of air is 7.65 x 10−6 m2/N, in comparison with 4.5 x 10-11 m2/N for water (on the same order of magnitude as tissue and plasma). This impedance mismatch results in a very high echogenicity. An echo from an individual contrast agent can be detected by a clinical ultrasound system sensitive to a volume on the order of 0.004 pl.

See also Isoechogenic, Retrolenticular Afterglow, and Sonographic Features.
Harmonic Power Doppler
(HPD) Harmonic power Doppler is currently one of the most sensitive techniques for detecting ultrasound contrast agents. HPD works by transmitting multiple pulses toward the object to be imaged and detecting the pulse-to-pulse changes in the received echo signals.
Second harmonic bandbass filtering is applied to the received signals to exploit the non-linear behavior of scattering from bubbles (clutter). Harmonic power Doppler operates best at high output levels because of increased contrast destruction, and pulse amplitudes close to the maximum allowed are used much of the time.
With a high mechanical index, non-linear propagation of the sound will cause significant harmonic components from tissue, and the contrast agent to tissue ratio will decrease.
Also called Harmonic Power Angio. See also Multiple Frame Trigger.
History of Ultrasound
The earliest introduction of vascular ultrasound contrast agents (USCA) was by Gramiak and Shah in 1968, when they injected agitated saline into the ascending aorta and cardiac chambers during echocardiographic to opacify the left heart chamber. Strong echoes were produced within the heart, due to the acoustic mismatch between free air microbubbles in the saline and the surrounding blood.
In 1880 the Curie brothers discovered the piezoelectric effect in quartz. Converse piezoelectricity was mathematically deduced from fundamental thermodynamic principles by Lippmann in 1881.
In 1917, Paul Langevin (France) and his coworkers developed an underwater sonar system (called hydrophone) that uses the piezoelectric effect to detect submarines through echo location.
In 1935, the first RADAR system was produced by the British physicist Robert Watson-Wat. Also about 1935, developments began with the objective to use ultrasonic power therapeutically, utilizing its heating and disruptive effects on living tissues. In 1936, Siemens markets the first ultrasonic therapeutic machine, the Sonostat.
Shortly after the World War II, researchers began to explore medical diagnostic capabilities of ultrasound. Karl Theo Dussik (Austria) attempted to locate the cerebral ventricles by measuring the transmission of ultrasound beam through the skull. Other researchers try to use ultrasound to detect gallstones, breast masses, and tumors. These first investigations were performed with A-mode.
Shortly after the World War II, researchers in Europe, the United States and Japan began to explore medical diagnostic capabilities of ultrasound. Karl Theo Dussik (Austria) attempted to locate the cerebral ventricles by measuring the transmission of ultrasound beam through the skull. Other researchers, e.g. George Ludwig (United States) tried to use ultrasound to detect gallstones, breast masses, and tumors. This first experimentally investigations were performed with A-mode. Ultrasound pioneers contributed innovations and important discoveries, for example the velocity of sound transmission in animal soft tissues with a mean value of 1540 m/sec (still in use today), and determined values of the optimal scanning frequency of the ultrasound transducer.
In the early 50`s the first B-mode images were obtained. Images were static, without gray-scale information in simple black and white and compound technique. Carl Hellmuth Hertz and Inge Edler (Sweden) made in 1953 the first scan of heart activity. Ian Donald and Colleagues (Scotland) were specialized on obstetric and gynecologic ultrasound research. By continuous development it was possible to study pregnancy and diagnose possible complications.
After about 1960 two-dimensional compound procedures were developed. The applications in obstetric and gynecologic ultrasound boomed worldwide from the mid 60's with both, A-scan and B-scan equipment. In the late 60's B-mode ultrasonography replaced A-mode in wide parts.
In the 70's gray scale imaging became available and with progress of computer technique ultrasonic imaging gets better and faster.
After continuous work, in the 80's fast realtime B-mode gray-scale imaging was developed. Electronic focusing and duplex flow measurements became popular. A wider range of applications were possible.
In the 90's, high resolution scanners with digital beamforming, high transducer frequencies, multi-channel focus and broad-band transducer technology became state of the art. Optimized tissue contrast and improved diagnostic accuracy lead to an important role in breast imaging and cancer detection. Color Doppler and Duplex became available and sensitivity for low flow was continuously improved.
Actually, machines with advanced ultrasound system performance are equipped with realtime compound imaging, tissue harmonic imaging, contrast harmonic imaging, vascular assessment, matrix array transducers, pulse inversion imaging, 3D and 4D ultrasound with panoramic view.

Result Pages :
...
...
 
Share This Page
Facebook
Twitter
LinkedIn
Look
      Ups
Medical-Ultrasound-Imaging.com
former US-TIP.com
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology TIP • Medical-Ultrasound-Imaging
Copyright © 2008 - 2024 SoftWays. All rights reserved.
Terms of Use | Privacy Policy | Advertise With Us
 [last update: 2023-11-06 01:42:00]