'Cerebrovascular Ultrasonography' Searchterm 'Cerebrovascular Ultrasonography' found in 6 articles 1 term [ • ] - 5 definitions [• ] Result Pages : • Cerebrovascular Ultrasonography
Cerebrovascular ultrasonography is the best screening tool for the detection of carotid artery stenosis. Transcranial sonography is used in the evaluation of patients with suspected cerebrovascular disease, but a common problem is the attenuation of the ultrasound signal by the skull. Contrast enhanced ultrasound play a particularly important role in the visualization of the intracranial vessels, and thus improves the accuracy of transcranial Doppler and increases the potential of this technique. The use of microbubbles is helpful for classification of stenosis and for plaque evaluation in patients with poor initial examination. Ultrasound contrast agents avoid misdiagnosing a subtotal stenosis, which is a very important clinical issue. See also Adventitia, Intima, Periorbital Doppler, and Acoustic Window. •
Contrast agents improve the sensitivity of vascular Doppler ultrasound, for example in cerebrovascular sonography or examinations of deep abdominal vessels. They also enlarge the role of transcranial Doppler. Microbubbles can be used with various modes e.g., color and power Doppler imaging, as well as pulsed-wave Doppler to increase the signal intensity. However, the ultrasound system must be suitable for contrast enhanced technology. Microbubbles usually stay within the vascular space; nevertheless, the contrast enhancement is limited to 2−6 minutes caused by physiologic clearance and bubble destruction. Depended on the application, contrast agents can be administered with a different injection rate e.g., bolus injection, slow injection, or continuous infusion. Stable, homogeneous, and prolonged enhancement can be obtained with perfusion, lasting until the infusion is stopped. See also Cerebrovascular Ultrasonography, Multiple Frame Trigger. •
Periorbital Doppler is a continuous wave Doppler examination, determining the amplitude, flow direction, and compression effect of the frontal or supraorbital arteries in the periorbital region. See also Acoustic Window, and Cerebrovascular Ultrasonography. •
Sonography [aka: ultrasonography] is a term that encompasses the entire process of performing ultrasound examinations and interpreting the obtained images. Sonography involves the skilled application of ultrasound technology by trained professionals known as sonographers or ultrasound technologists. These specialists operate the ultrasound equipment, manipulate the transducer, and acquire the necessary pictures for diagnostic imaging purposes. Sonography requires in-depth knowledge of anatomy, physiology, and pathology to accurately interpret the ultrasound images and provide valuable information to the treating physician. Sonography uses equipment that generates high frequency sound waves to produce images from muscles, soft tissues, fluid collections, and vascular structures of the human body. Obstetric sonography is commonly used during pregnancy. Sonography visualizes anatomy, function, and pathology of for example gallbladder, kidneys, pancreas, spleen, liver, uterus, ovaries, urinary bladder, eye, thyroid, breast, aorta, veins and arteries in the extremities, carotid arteries in the neck, as well as the heart. A typical medical ultrasound machine, usually a real-time scanner, operates in the frequency range of 2 to 13 megahertz. See also Musculoskeletal and Joint Ultrasound, Pediatric Ultrasound, Cerebrovascular Ultrasonography and Contrast Enhanced Ultrasound. Further Reading: Basics:
News & More:
•
(TCD) Transcranial color Doppler sonography allows to evaluate the presence and flow direction of vessels as well as their relationships to surrounding structures. A disadvantage of cerebrovascular ultrasonography is the attenuation of the ultrasound signal by the skull. The loss of power through the skull is considerable, the signal to noise ratio is poor and so contrast enhanced Doppler imaging is advantageous. The use of ultrasound contrast agents provides a diagnostic window of sufficient duration and imaging quality to improve an evaluation of the cerebral vessels. Contrast TCD also results in visualization of small arteries and veins and greater length of these vessels. See also A-Mode, Cranial Bone Thermal Index, Transcranial Color Coded Sonography and Transcranial Window. Further Reading: Basics:
News & More:
Result Pages : |