'Bubble Specific Imaging' p3 Searchterm 'Bubble Specific Imaging' found in 20 articles 1 term [ • ] - 6 definitions [• ] - 13 booleans [• ]Result Pages : •
Quantison, consisting of air-filled microbubbles with stiff and rigid human serum albumin shells, is an investigational ultrasound contrast agent for the assessment of coronary artery disease. The stiff shell inhibits the bubbles from oscillating and decrease non-linear scattering. Quantison is capable of long lasting cavity contrast and myocardial opacification using intermittent imaging.
Drug Information and Specification
RESEARCH NAME
AIP101
DEVELOPER
Andaris Ltd. (acquired by Quadrant)
INDICATION -
DEVELOPMENT STAGE APPLICATION
Intravenous injection
TYPE
Microbubble
Human serum albumin
CHARGE
-
Air
MICROBUBBLE SIZE
-
PREPARATION
Reconstitute with water
DO NOT RELY ON THE INFORMATION PROVIDED HERE, THEY ARE
NOT A SUBSTITUTE FOR THE ACCOMPANYING PACKAGE INSERT! •
Targeted ultrasound contrast agents provide advantages compared with usual microbubble blood pool agents. The goal of targeted ultrasound contrast agents is to significantly and selectively enhance the detection of a targeted vascular site. Tissue-specific ultrasound contrast agents improve the image contrast resolution through differential uptake. Targeted drug delivery via contrast microbubbles is another contrast media concept and provides the potential for earlier detection and characterization of disease. Targeted contrast imaging provides a higher sensitivity and specificity than obtained with a nontargeted contrast agent. The detection of disease-indicative molecular signatures may allow early assessment of pathology on a molecular level. Molecular imaging should be an efficient and less invasive technique to obtain three-dimensional localization of pathology. Ultrasound agents typically remain within the vascular space, and therefore possible targets include molecular markers on thrombus, endothelial cells, and leukocytes. Targeted contrast agents permit noninvasive detection of thrombus, cancer, inflammation, or other sites where specific integrins or other adhesion molecules are expressed. Adhesion molecules such as monoclonal antibodies, peptides, asialoglycoproteins, or polysaccharides are incorporated into the shell of the microbubble or liposome. After injection into the bloodstream, the targeted agent accumulates via adhesion receptors at the affected site, enhancing detection with an ultrasound system. See also Acoustically Active Lipospheres, and Tissue-Specific Ultrasound Contrast Agent. Further Reading: News & More:
•
Tissue-specific ultrasound contrast agents improve the image contrast resolution through differential uptake. The concentration of microbubble contrast agents within the vasculature, reticulo-endothelial, or lymphatic systems produces an effective passive targeting of these areas. Other contrast media concepts include targeted drug delivery via contrast microbubbles. Tissue-specific ultrasound contrast agents are injected intravenously and taken up by specific tissues or they adhere to specific targets such as venous thrombosis. These effects may require minutes to several hours to reach maximum effectiveness. By enhancing the acoustic differences between normal and diseased tissues, these tissue-specific agents improve the detectability of abnormalities. Some microbubbles accumulate in normal hepatic tissue; some are phagocytosed by Kupffer cells in the reticuloendothelial system and others may stay in the sinusoids. Liver tumors without normal Kupffer cells can be identified by the lack of the typical mosaic color pattern of the induced acoustic emission. The hepatic parenchymal phase, which may last from less than an hour to several days, depending on the specific contrast medium used, may be imaged by bubble-specific modes such as stimulated acoustic emission (color Doppler using high MI) or pulse inversion imaging. Further Reading: News & More:
•
(MI) The mechanical index is an estimate of the maximum amplitude of the pressure pulse in tissue. It is an indicator of the likelihood of mechanical bioeffects (streaming and cavitation). The mechanical index of the ultrasound beam is the amount of negative acoustic pressure within a ultrasonic field and is used to modulate the output signature of US contrast agents and to incite different microbubble responses. The mechanical index is defined as the peak rarefactional pressure (negative pressure) divided by the square root of the ultrasound frequency. The FDA ultrasound regulations allow a mechanical index of up to 1.9 to be used for all applications except ophthalmic (maximum 0.23). The used range varies from 0.05 to 1.9. At low acoustic power, the acoustic response is considered as linear. At a low MI (less than 0.2), the microbubbles undergo oscillation with compression and rarefaction that are equal in amplitude and no special contrast enhanced signal is created. Microbubbles act as strong scattering objects due to the difference in impedance between air and liquid, and the acoustic response is optimized at the resonant frequency of a microbubble. At higher acoustic power (MI between 0.2-0.5), nonlinear oscillation occurs preferentially with the bubbles undergoing rarefaction that is greater than compression. Ultrasound waves are created at harmonics of the delivered frequency. The harmonic response frequencies are different from that of the incident wave (fundamental frequency) with subharmonics (half of the fundamental frequency), harmonics (including the second harmonic response at twice the fundamental frequency), and ultra-harmonics obtained at 1.5 or 2.5 times the fundamental frequency. These contrast enhanced ultrasound signals are microbubble-specific. At high acoustic power (MI greater than 0.5), microbubble destruction begins with emission of high intensity transient signals very rich in nonlinear components. Intermittent imaging becomes needed to allow the capillaries to be refilled with fresh microbubbles. Microbubble destruction occurs to some degree at all mechanical indices. A mechanical index from 0.8 to 1.9 creates high microbubble destruction. The output signal is unique to the contrast agent. Further Reading: Basics:
News & More:
•
[This entry is marked for removal.] From POINT Biomedical Corp BiSphere™ is a technology for drug delivery applications by ultrasound. BiSpheres™ consists of microparticles comprising a shell of an outer layer of a biologically compatible material and an inner layer of biodegradable polymer. The core of the microbubbles contains a filling gas, liquid, or solid for use in drug delivery or as a contrast agent for ultrasonic contrast imaging. The contrast agent particles are capable of passing through the capillary systems of a subject. The drug-loaded biSpheres™ would be administered intravenously and freely circulate throughout the body, while the drug encapsulated within would remain biologically unavailable. The drug would only be released when the biSpheres become flooded when passing through an externally directed ultrasound field. The use of biSpheres™ to transport agents to specific sites within the body is expected to substantially increase local efficacy while decreasing systemic side effects or adverse reactions. The biSpheres™ may also serve to protect labile agents from metabolism or degradation. The noninvasive release of a protected, encapsulated agent can be controlled by ultrasound imaging to a depth of 20-30 cm from the skin surface. The flexibility in size control in the biSphere™ technology has enabled the construction of submicron ultrasound contrast agents suitable for lymphatic imaging, with a diameter in the submicron range. This agent, while much smaller in size than CardioSphere®, is based on the BiSphere configuration: a shell within a shell enclosing a gas. The inner layer, made from a biodegradable polymer, provides the physical structure and controls the acoustic response. The outer layer functions as the biological interface. Each of these layers has been independently tailored to fulfill the specific requirements for lymphatic imaging. Further Reading: News & More:
Result Pages : |