'Boundary Layer' Searchterm 'Boundary Layer' found in 5 articles 1 term [ • ] - 3 definitions [• ] - 1 boolean [• ]Result Pages : • Boundary Layer
The boundary layer is a thin layer of quasi-stationary fluid in contact with the walls of the containing vessel.
•
Through diffraction and refraction on intersections edge acoustic shadowing can be created. The acoustic shadowing artifact is the loss of information below a dense object because the majority of the sound energy was reflected back by the object.
Shadowing artifacts occur if decreasing of the echo amplitude is not exponential with penetration depth caused by inhomogeneous tissue layers and fluid or air-filled regions. Bone, air, foreign bodies and calcification stop the transmission of sound waves producing a 'sonic shadow' which is a dark region distal to the echogenic obstructing region. This artifact occurs also in objects like e.g. prosthetic valves. See also Boundary Layer, and Half-Value Layer. Further Reading: News & More:
•
Enhancement artifacts occur if decreasing of the echo amplitude is not equal with penetration depth caused by inhomogeneous tissue layers and fluids like cysts or air-filled regions. The enhancement artifact appears as a hyperintense (hyperechoic) signal.
The attenuation of the ultrasound wave in fluids is much lower as the attenuation in other tissues, therefore tissues distal to fluid are enhanced. Artificial enhancement may also be found distal to a homogeneous solid tumor surrounded by adipose tissue, due to the comparatively high attenuation in fat. See also Boundary Layer, and Half-Value Layer. •
Laminar flow is non turbulent flow in arteries with blood traveling in layers or laminae. In a straight vessel, the layer in the center flows at a greater speed with subsequent layers toward the vessel wall flowing at slower speeds. See also Boundary Layer, and Half-Value Layer. •
(IVUS) For intravascular ultrasound a small IVUS catheter with a probe is introduced into the artery. The transducer transmits and receives acoustic energy through this catheter. The reflected acoustic energy is used to build a picture of the inside of the vessel. A IVUS image consists of three layers around the lumen, the intima, media and adventitia. In addition, elastography or palpography could be used to evaluate the local mechanical properties of tissues (e.g. lipid pools in high-risk vulnerable atherosclerotic plaques). These techniques use the deformation caused by the intraluminal pressure generated by the probe. A high strain region at the lumen vessel wall boundary has 88% sensitivity and 89% specificity for identifying vulnerable plaques. There are high strain values of 1% in soft plaques with increased strain up to 2% at the shoulders of the plaque, while calcified material shows low strain values (0-0.2%). The radial strain in the tissue is obtained by cross-correlation techniques on the radio frequency signal. The strain is color-coded and plotted as a complimentary image to the intravascular ultrasound echogram. See also Interventional Ultrasound, Vascular Ultrasound. Result Pages : |