Medical Ultrasound Imaging
Tuesday, 3 December 2024
• Welcome to
     Medical-Ultrasound-Imaging.com!
     • Sign in / Create account
 
 'Axial Resolution' 
SEARCH   
A B C D E F G H I J K L M N O P Q R S T U V W Z 
Searchterm 'Axial Resolution' found in 8 articles
1
term [
] - 5 definitions [
] - 2 booleans [
]
Result Pages :
Axial Resolution
Axial resolution is the minimum separation between two interfaces located in a direction parallel to the beam (objects above and below each other) so that they can be imaged as two different interfaces. The axial space resolution directly relates with the wave frequency, but higher frequencies have lower penetration into tissues.
The axial resolution is inversely proportional to the frequency of the transducer depending on the size of the patient. The higher the frequency the lower the axial resolution in large patients. This state results from the rapid absorption of the ultrasound energy with lower penetration. Lower frequencies are utilized to increase depth of penetration.

See also Damping.
Damping
Damping is a process, material, design, and mounting technique used to reduce the pulse duration or ringing of the transducer. Special material is applied to the back of the transducer in order to reduce the amplitude and pulse length of the sound wave.
Damping improves axial resolution by reducing pulse length. Thereby the lateral resolution increases.
Endoscopic Ultrasound
(EUS) Endoscopic ultrasound uses a small probe that is inserted in the rectum either through a proctoscope or by itself. During the test biopsies of any suspicious areas are possible. The usual necessary preparation is an enema to empty the rectum. Endoscopic ultrasound provides additional information about rectal polyps, rectal cancer, perianal infection, and sphincter muscle injuries and improves the selection of patients for local excision.
Transrectal echography using a high-frequency transducer is a well established method for preoperative rectal carcinoma assessment.
Endoscopic scanning is limited by the ultrasound physics (depth and axial resolution) of the endocavitary probe. Therefore, the combination of endoscopic and transcutaneous ultrasound is most favorable.
Frequency
(F) The number of cycles of a periodic process per unit time. Frequency and wavelength are inversely related. The higher the frequency the smaller the wavelength. The frequency of ultrasound is expressed in units of hertz (Hz), where 1 Hz = 1 cycle per second.
The effect of different frequencies on tissue penetration:
The higher the frequency the less the penetration, the lower the frequency the greater the penetration. As frequency increases, resolution improves but the imaging depth or penetration decreases. The lower the axial resolution, the more detail can be seen.
Usual frequencies for pediatric ultrasound: 5.0mHz to 7.5mHz and 10mHz.
Usual frequencies for adult ultrasound: 2.0mHz to 3.0mHz.

See also Doppler Interrogation Frequency, Multi-frequency Probe, and Huygens Principle.
Pulse Inversion Imaging
(PII) Pulse inversion imaging (also called phase inversion imaging) is a non-linear imaging method specifically made for enhanced detection of microbubble ultrasound contrast agents. In PII, two pulses are sent in rapid succession into the tissue; the second pulse is a mirror image of the first. The resulting echoes are added at reception. Linear scattering of the two pulses will give two echoes which are inverted copies of each other, and these echoes will therefore cancel out when added.
Linear scattering dominates in tissues. Echoes from linear scatterers such as tissue cancel, whereas those from gas microbubbles do not. Non-linear scattering of the two pulses will give two echoes which do not cancel out completely due to different bubble response to positive and negative pressures of equal magnitude. The harmonic components add, and the signal intensity difference between non-linear and linear scatterers is therefore increased. The resulting images show high sensitivity to bubbles at the resolution of a conventional image.
In harmonic imaging, the frequency range of the transmitted pulse and the received signal should not overlap, but this restriction is less in pulse inversion imaging since the transmit frequencies are not filtered out, but rather subtracted. Broader transmit and receive bandwidths are therefore allowed, giving shorter pulses and improved axial resolution, hence the alternative term wideband harmonic imaging. Many ultrasound machines offer some form of pulse inversion imaging.

See also Pulse Inversion Doppler, Narrow Bandwidth, Dead Zone, Ultrasound Phantom.
Result Pages :
 
Share This Page
Facebook
Twitter
LinkedIn

Look
      Ups
Medical-Ultrasound-Imaging.com
former US-TIP.com
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology TIP • Medical-Ultrasound-Imaging
Copyright © 2008 - 2024 SoftWays. All rights reserved.
Terms of Use | Privacy Policy | Advertise With Us
 [last update: 2023-11-06 01:42:00]